DOI QR코드

DOI QR Code

Joint Properties of Inconel 718 Additive Manufactured on Ti-6Al-4V by FGM method

Ti-6Al-4V 합금 기지 위에 FGM 방식으로 적층제조 된 Inconel 718의 접합 특성 분석

  • Park, Chan Woong (Department of Materials Science & Engineering, Hanbat National University) ;
  • Park, Jin Woong (Department of Materials Science & Engineering, Hanbat National University) ;
  • Jung, Ki Chae (Department of Materials Science & Engineering, Hanbat National University) ;
  • Lee, Se-Hwan (Agency for Defense Development) ;
  • Kim, Sung-Hoon (Nambu University) ;
  • Kim, Jeoung Han (Department of Materials Science & Engineering, Hanbat National University)
  • 박찬웅 (국립한밭대학교 신소재공학과) ;
  • 박진웅 (국립한밭대학교 신소재공학과) ;
  • 정기채 (국립한밭대학교 신소재공학과) ;
  • 이세환 (국방과학연구소) ;
  • 김성훈 (남부대학교 자동차기계공학과) ;
  • 김정한 (국립한밭대학교 신소재공학과)
  • Received : 2021.09.30
  • Accepted : 2021.10.13
  • Published : 2021.10.28

Abstract

In the present work, Inconel 718 alloy is additively manufactured on the Ti-6Al-4V alloy, and a functionally graded material is built between Inconel 718 and Ti-6Al-4V alloys. The vanadium interlayer is applied to prevent the formation of detrimental intermetallic compounds between Ti-6Al-4V and Inconel 718 by direct joining. The additive manufacturing of Inconel 718 alloy is performed by changing the laser power and scan speed. The microstructures of the joint interface are characterized by scanning electron microscopy, energy-dispersive X-ray spectroscopy, and micro X-ray diffraction. Additive manufacturing is successfully performed by changing the energy input. The micro Vickers hardness of the additive manufactured Inconel 718 dramatically increased owing to the presence of the Cr-oxide phase, which is formed by the difference in energy input.

Keywords

Acknowledgement

본 논문은 산업통상자원부(MOTIE)의 재원으로 한국산업기술진흥원(KIAT)의 지원을 받아 수행된 연구임(P0002019, 산업혁신인재성장지원사업).

References

  1. T. Fujieda, M. Chen, H. Shiratori, K. Kuwabara, K. Yamanaka, Y. Koizumi, A. Chiba and S. Watanabe: Addit. Manuf., 25 (2019) 412. https://doi.org/10.1016/j.addma.2018.10.023
  2. C. W. Park, N. K. Adomako, M. G. Lee and J. H. Kim: J. Korean Powder Metall. Inst., 26 (2019) 319. https://doi.org/10.4150/KPMI.2019.26.4.319
  3. C. Zhang, F. Chen, Z. Huang, M. Jia, G. Chen, Y. Ye, Y. Lin, W. Liu, B. Chen, Q. Shen, L. Zhang and E. J. Lavernia: Mater. Sci. Eng. A, 764 (2019) 138209. https://doi.org/10.1016/j.msea.2019.138209
  4. J. Tong, C. Bowen and A. Plummer: Mater. Sci. Technol., 33 (2016) 138. https://doi.org/10.1080/02670836.2016.1172787
  5. E. Akca and A. Gursel: Period. Eng. Nat. Sci., 3 (2015) 15.
  6. ASM Handbook Volume 3: Alloy Phase Diagrams, (1992).
  7. H. Li, D. Sun, X. Gu, P. Dong and Z. Lv: Mater, Des., 50 (2013) 342. https://doi.org/10.1016/j.matdes.2013.03.014
  8. B. Onuike and A. Bandyopadhyay: Addit. Manuf., 22 (2018) 844. https://doi.org/10.1016/j.addma.2018.06.025
  9. N. K. Adomako, S. Noh, C. Oh, S. Yang and J. H. Kim: Mater. Res. Lett., 7 (2019) 259. https://doi.org/10.1080/21663831.2019.1596989
  10. J. Zhang, X. Wang, S. Paddea and X. Zhang: Mater. Des., 90 (2016) 551. https://doi.org/10.1016/j.matdes.2015.10.141
  11. C. W. Park, N. K. Adomako, M. G. Lee, J. H. Kim and J. H. Kim: Int. J. Refract. Met. Hard Mater., 101 (2021) 105671. https://doi.org/10.1016/j.ijrmhm.2021.105671