DOI QR코드

DOI QR Code

Microstructures and Mechanical Properties of Ti-20Mo-0.5EB Composites

Hydroxyapatite를 대체하여 말뼈를 첨가한 Ti-20Mo-0.5EB의 미세조직과 기계적 특성

  • Bae, Suhyun (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Jeong, Wonki (Department of Materials Science and Metallurgical Engineering, Sunchon National University) ;
  • Shin, Se-Eun (Department of Materials Science and Metallurgical Engineering, Sunchon National University)
  • 배수현 (순천대학교 신소재공학과) ;
  • 정원기 (순천대학교 신소재공학과) ;
  • 신세은 (순천대학교 신소재공학과)
  • Received : 2021.09.03
  • Accepted : 2021.10.13
  • Published : 2021.10.28

Abstract

In this study, Ti-Mo-EB composites are prepared by ball milling and spark plasma sintering (SPS) to obtain a low elastic modulus and high strength and to evaluate the microstructure and mechanical properties as a function of the process conditions. As the milling time and sintering temperature increased, Mo, as a β-Ti stabilizing element, diffused, and the microstructure of β-Ti increased. In addition, the size of the observed phase was small, so the modulus and hardness of α-Ti and β-Ti were measured using nanoindentation equipment. In both phases, as the milling time and sintering temperature increased, the modulus of elasticity decreased, and the hardness increased. After 12 h of milling, the specimen sintered at 1000℃ showed the lowest values of modulus of elasticity of 117.52 and 101.46 GPa for α-Ti and β-Ti, respectively, confirming that the values are lower compared to the that in previously reported studies.

Keywords

Acknowledgement

This paper was supported by (in part) Sunchon National University Research Fund in 2020 (Grant number: 2020-0205).

References

  1. M. S. Asl, S. A Delbari, M. Azadbeh, A. S. Namini, M. Mehrabian, V.-H. Nguyen, Q. V. le, M. Shokouhimehr and M. Mohammadi: J. Mater. Res. Technol., 9 (2020) 10647. https://doi.org/10.1016/j.jmrt.2020.07.066
  2. S. Wu, X. Liu, K. W. K. Yeung, H. Guo, P. Li, T. Hu, C. Y. Chung and P. K. Chu: Surf. Coat. Technol., 233 (2013) 13. https://doi.org/10.1016/j.surfcoat.2012.10.023
  3. J. M. Cordeiro, B. E. Nagay, A. L. R. Ribeiro, N. C. D. Cruz, E. C. Rangel, L. M. G. Fais, L. G. Vaz and V. A. R. Barao: J. Alloy. Compd., 770 (2019) 1038. https://doi.org/10.1016/j.jallcom.2018.08.154
  4. S. B. Gabriel, J. V. P. Panaino, I. D. Santos, L. S. Araujo, P. R. Mei, L. H. D. Almeida and C. A. Nunes: J. Alloys Compd., 536 (2012) S208. https://doi.org/10.1016/j.jallcom.2011.11.035
  5. H. C. Choe and W. A. Brantley: Adv. Mater. Res., 26 (2007) 825. https://doi.org/10.4028/www.scientific.net/AMR.26-28.825
  6. W. Osterle, D. Klaffke, M. Griepentrog, U. Gross, I. Kranz and C. Knabe: Wear, 264 (2008) 505. https://doi.org/10.1016/j.wear.2007.04.001
  7. A. Farrahnoor and H. Zuhailawati: Mater. Today Commun., 27 (2021) 102209. https://doi.org/10.1016/j.mtcomm.2021.102209
  8. D. Raza, G. Kumar, M. Uzair, M. K. Singh, D. Sultan and R. Kumar: Mater.Today: Proc., 16 (2021) 665.
  9. X. Wang, Y. Chen, L. Xu, Z. Liu and K.-D. Woo: Mater. Des., 49 (2013) 511. https://doi.org/10.1016/j.matdes.2013.01.012
  10. L. Xia, Y. Xie, B. Fang, X. Wang and K. Lin: Chem. Eng. J., 347 (2018) 711. https://doi.org/10.1016/j.cej.2018.04.045
  11. A. Kar, K. S. Raja and M. Misra: Surf. Coat. Technol., 201 (2006) 3723. https://doi.org/10.1016/j.surfcoat.2006.09.008
  12. C. Vasilescu, P. Drob, E. Vasilescu, I. Demetrescu, D. Ionita, M. Prodana, S. I. Drob: Corros. Sci., 53 (2011) 992. https://doi.org/10.1016/j.corsci.2010.11.033
  13. O. A. Osuchukwu, A. Salihi, I. Abdullahi, B. Abdulkareem and C. S. Nwannenna: SN Appl. Sci., 3 (2021) 1.
  14. T. Laonapakul: J. Eng. Appl. Sci., 42 (2015) 269.
  15. N. M. Pu'ad, P. Koshy, H. Z. Abdullah, M. I. Idris and T. C. Lee: Heliyon, 5 (2019) e01588. https://doi.org/10.1016/j.heliyon.2019.e01588
  16. K. Haberko, M. M. Bucko, J. Brzezinska Miecznik, M. Haberko, W. Mozgawa, T. Panz, A. Pyda and J. Zarebski: J. Eur. Ceram. Soc., 26 (2006) 537. https://doi.org/10.1016/j.jeurceramsoc.2005.07.033
  17. W. Jeong, S.-E. Shin and H. Choi: Metals, 10 (2020) 581. https://doi.org/10.3390/met10050581
  18. J. Singh, S. S. Chatha and H. Singh: Ceram. Int., 47 (2021) 782. https://doi.org/10.1016/j.ceramint.2020.08.189
  19. Q. Chen, Y. Zou, W. Fu, X. Bai, G. Ji, H. Yao, H. Wang and F. Wang: Ceram. Int., 45 (2018) 4526. https://doi.org/10.1016/j.ceramint.2018.11.137
  20. A. Rakngarm Nimkerdphol, Y. Otsuka and Y. Mutoh: J. Mech. Behav. Biomed. Mater., 36 (2014) 98. https://doi.org/10.1016/j.jmbbm.2014.04.007
  21. J. H. Lee, H. L. Jang, K. M. Lee, H. R. Baek, K. Jin and J. H. Noh: J. Biomed. Mater. Res. Part B Appl. Biomater., 105 (2017) 647. https://doi.org/10.1002/jbm.b.33589
  22. H. L. Yao, G. C. Ji, Q. Y. Chen, X. B. Bai, Y. L. Zou and H. T. Wang: J. Therm. Spray. Technol., 27 (2018) 924. https://doi.org/10.1007/s11666-018-0735-x
  23. H. Farnoush, J. A. Mohandesi and H. Cimenoglu: J. Mech. Behav. Biomed. Mater., 46 (2015) 31. https://doi.org/10.1016/j.jmbbm.2015.02.021
  24. B. A. Obadele, O. O. Ige and P. A. Olubambi: J. Alloys Compd., 710 (2017) 825. https://doi.org/10.1016/j.jallcom.2017.03.340
  25. M. E. Maja, O. E. Falodun, B. A. Obadele, S. R. Oke and P. A. Olubambi: Ceram. Int., 44 (2018) 4419. https://doi.org/10.1016/j.ceramint.2017.12.042
  26. J. L. Xu, S. C. Tao, L. Z. Bao, J. M. Luo and Y. F. Zheng: Mater. Sci. Eng. C, 97 (2019) 156. https://doi.org/10.1016/j.msec.2018.12.028
  27. C. Han, Y. Li, Q. Wang, D. Cai, Q. Wei, L. Yang, S. Wen, J. Liu and Y. Shi: Mater. Des., 141 (2018) 256. https://doi.org/10.1016/j.matdes.2017.12.037
  28. W. Jeong, S. E. Shin, H. Son and H. Choi: Mater. Charact., 179 (2021) 111361. https://doi.org/10.1016/j.matchar.2021.111361
  29. M. Shahedi Asl, S. A. Delbari, M. Azadbeh, A. S. Namini, M. Mehrabian, V.-H. Nguyen and Q. V. Le, M. Mohammadi: Mater. Res. Technol., 9 (2020) 1064.