DOI QR코드

DOI QR Code

Oxidation Behaviors and Degradation Properties of Aluminide Coated Stainless Steel at High Temperature

알루미나이드 확산코팅된 스테인레스 합금의 내산화 및 내삭마 특성

  • Hwang, Cheol Hong (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Hyo Min (Department of Materials Science and Engineering, Hanbat National University) ;
  • Oh, Jeong Seok (Department of Materials Science and Engineering, Hanbat National University) ;
  • Hwang, Dong Hyeon (Department of Materials Science and Engineering, Hanbat National University) ;
  • Hwang, Yu Seok (Department of Materials Science and Engineering, Hanbat National University) ;
  • Lee, Jong Won (Department of Materials Science and Engineering, Hanbat National University) ;
  • Choi, Jeong Mook (Jinhap Corp.) ;
  • Park, Joon Sik (Department of Materials Science and Engineering, Hanbat National University)
  • 황철홍 (한밭대학교 신소재공학과) ;
  • 이효민 (한밭대학교 신소재공학과) ;
  • 오정석 (한밭대학교 신소재공학과) ;
  • 황동현 (한밭대학교 신소재공학과) ;
  • 황유석 (한밭대학교 신소재공학과) ;
  • 이종원 (한밭대학교 신소재공학과) ;
  • 최정묵 ((주) 진합) ;
  • 박준식 (한밭대학교 신소재공학과)
  • Received : 2021.08.30
  • Accepted : 2021.10.04
  • Published : 2021.10.28

Abstract

Stainless steel, a type of steel used for high-temperature parts, may cause damage when exposed to high temperatures, requiring additional coatings. In particular, the Cr2O3 product layer is unstable at 1000℃ and higher temperatures; therefore, it is necessary to improve the oxidation resistance. In this study, an aluminide (Fe2Al5 and FeAl3) coating layer was formed on the surface of STS 630 specimens through Al diffusion coatings from 500℃ to 700℃ for up to 25 h. Because the coating layers of Fe2Al5 and FeAl3 could not withstand temperatures above 1200℃, an Al2O3 coating layer is deposited on the surface through static oxidation treatment at 500℃ for 10 h. To confirm the ablation resistance of the resulting coating layer, dynamic flame exposure tests were conducted at 1350℃ for 5-15 min. Excellent oxidation resistance is observed in the coated base material beneath the aluminide layer. The conditions of the flame tests and coating are discussed in terms of microstructural variations.

Keywords

Acknowledgement

The financial support of Korea Institute for Advancement of Technology (KIAT) grand funded by the Korea Government (MOTIE) (P0002019) and National Research Foundation of Korea (NRF) funded by the Ministry of Education, Science and Technology is greatly appreciated (contract No. 2020R111A3070554).

References

  1. C. C. Shin, C. M. Shih, Y. Y. Su, L. H. J. Su, M. S. Chang and S. J. Lin: Corros. Sci., 46 (2004) 427. https://doi.org/10.1016/S0010-938X(03)00148-3
  2. S. G. Wang, M. Sun, H. B. Han, K. Long and Z. D. Zhang: Corros. Sci., 72 (2013) 64. https://doi.org/10.1016/j.corsci.2013.03.008
  3. S. Benafia, D. Retraint, S. Yapi Brou, B. Panicaud and J. L. Grosseau Poussard: Corros. Sci., 136 (2019) 188. https://doi.org/10.1016/j.corsci.2018.03.007
  4. K. S. Choi, Y. B. Song, S. H. Yi and J. S. Park: Korean J. Met. Mater., 57 (2019) 131. https://doi.org/10.3365/kjmm.2019.57.3.131
  5. X. Xu, X. Zhang, G. Chen and Z. Lu: Mater. Lett., 65 (2011) 3285. https://doi.org/10.1016/j.matlet.2011.07.021
  6. K. Choi, W. Yang, Y. J. Kim, J. S. Park and M. K. Kim: Korean J Met. Mater., 28 (2018) 3.
  7. W. C. Yang, S. Lee, C,-H Chung, R. Sakidja, and J. S. Park: https://doi.org/10.1007/s11665-021-05899-7.
  8. D. G. Liu, T. T. Yang, Y. L. Liu, L. M. Luo and Y. C. Wu: Vacuum., 185 (2021) 110032. https://doi.org/10.1016/j.vacuum.2020.110032
  9. K. Deshmikh, R. Parsai, A. Anshul, A. Singh, P. Bharadwaj, R. Gupta, D. Mishra and S. S. Amritphale: Int. J. Adhes. Adhes., 75 (2017) 139. https://doi.org/10.1016/j.ijadhadh.2017.03.002
  10. C. Kunzel, K. Dammler, U. Betke, J. Urbaschok and F. Scheffler: Mater. Des., 196 (2020) 109087. https://doi.org/10.1016/j.matdes.2020.109087
  11. M. Jacobs, Y. D. Vos and V. Middelkoop: Open Ceramics, 6 (2021) 100121. https://doi.org/10.1016/j.oceram.2021.100121
  12. Q. You, J. Xiong, Z. Guo, Y. Huo, L. Liang and L. Yang: Int. J. Refract. Met. Hard Mater., 98 (2021) 105554. https://doi.org/10.1016/j.ijrmhm.2021.105554
  13. L. Li, T. Yang, K. Wang, H. Fan, C. Hou, Q. Zhang, Y. Li, H. Yu and H. Wang: J. Colloid Interface Sci., 583 (2021) 188. https://doi.org/10.1016/j.jcis.2020.09.050
  14. J. J. Wu, H. J. Yan, F. H. Cao and L. K. Wu: Surf. Coat. Technol., 422 (2021) 127495. https://doi.org/10.1016/j.surfcoat.2021.127495
  15. W. Yang, K. Choi, K. H. Baik, Y. Kim, S. Lee, J. Kim, J. Lee and J. S. Park: Korean J. Met. Mater., 27 (2021) 914.
  16. K. Choi, W. Yang, Y. J. Kim, J. S. Park and M. K. Kim: Appl. Surf. Sci., 489 (2019) 668. https://doi.org/10.1016/j.apsusc.2019.06.020
  17. M. S. Kim, J. Park, Y. I. Son and J. S. Park: Korean J. Met. Mater., 53 (2015) 711. https://doi.org/10.3365/kjmm.2015.53.10.711
  18. J. S. Park, H. R. Lee, B. H. Lee and J. S. Park: Korean J. Met. Mater., 25 (2015) 5.
  19. H. Sina, J. Corneliusson, K. Turba and S. Iyengar: J. Alloys Compd., 636 (2015) 261. https://doi.org/10.1016/j.jallcom.2015.02.132