• Title/Summary/Keyword: nonlinear deformation

Search Result 1,009, Processing Time 0.022 seconds

Thermal post-buckling behavior of imperfect graphene platelets reinforced metal foams plates resting on nonlinear elastic foundations

  • Yin-Ping Li;Gui-Lin She;Lei-Lei Gan;H.B. Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.251-259
    • /
    • 2024
  • In this paper, the thermal post-buckling behavior of graphene platelets reinforced metal foams (GPLRMFs) plate with initial geometric imperfections on nonlinear elastic foundations are studied. First, the governing equation is derived based on the first-order shear deformation theory (FSDT) of plate. To obtain a single equation that only contains deflection, the Galerkin principle is employed to solve the governing equation. Subsequently, a comparative analysis was conducted with existing literature, thereby verifying the correctness and reliability of this paper. Finally, considering three GPLs distribution types (GPL-A, GPL-B, and GPL-C) of plates, the effects of initial geometric imperfections, foam distribution types, foam coefficients, GPLs weight fraction, temperature changes, and elastic foundation stiffness on the thermal post-buckling characteristics of the plates were investigated. The results show that the GPL-A distribution pattern exhibits the best buckling resistance. And with the foam coefficient (GPLs weight fraction, elastic foundation stiffness) increases, the deflection change of the plate under thermal load becomes smaller. On the contrary, when the initial geometric imperfection (temperature change) increases, the thermal buckling deflection increases. According to the current research situation, the results of this article can play an important role in the thermal stability analysis of GPLRMFs plates.

Fast Planar Shape Deformation using a Layered Mesh (계층 메쉬를 이용한 빠른 평면 형상 변형)

  • Yoo, Kwang-Seok;Choi, Jung-Ju
    • Journal of the Korea Computer Graphics Society
    • /
    • v.17 no.3
    • /
    • pp.43-50
    • /
    • 2011
  • We present a trade-off technique for fast but qualitative planar shape deformation using a layered mesh. We construct a layered mesh that is embedding a planar input shape; the upper-layer is denoted as a control mesh and the other lower-layer as a shape mesh that is defined by mean value coordinates relative to the control mesh. First, we try to preserve some shape properties including user constraints for the control mesh by means of a known existing nonlinear least square optimization technique, which produces deformed positions of the control mesh vertices. Then, we compute the deformed positions of the shape mesh vertices indirectly from the deformed control mesh by means of simple coordinates computation. The control mesh consists of a small number of vertices while the shape layer contains relatively a large number of vertices in order to embed the input shape as tightly as possible. Since the time-consuming optimization technique is applied only to the control mesh, the overall execution is extremely fast; however, the quality of deformation is sacrificed due to the sacrificed quality of the control mesh and its relativity to the shape mesh. In order to change the deformation behavior and consequently to compensate the quality sacrifice, we present a method to control the deformation stiffness by incorporating the orientation into the user constraints. According to our experiments, the proposed technique produces a planar shape deformation fast enough for real-time applications on limited embedded systems such as cell phones and tablet PCs.

The Seismic Response Evaluation of Ordinary Moment Resisting Steel Frames (철골 보통모멘트골조의 지진응답평가)

  • 이준석
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.233-238
    • /
    • 2000
  • The purpose of this study is to outline the analysis procedure for evaluating the performance of moment resisting steel frames. For this purpose, three ordinary moment resisting frames are designed in compliance to UBC 1994. The evaluation is performed by nonlinear static procedures using two analytical models. Only one analytical model using panel element can reflect the panel zone deformation explicitly. The limit values in FEMA 273 are used as guidelines of predicted demand parameters by which the performance of OMRFs may be assessed.

  • PDF

INFINITELY MANY SOLUTIONS FOR A CLASS OF THE ELLIPTIC SYSTEMS WITH EVEN FUNCTIONALS

  • Choi, Q-Heung;Jung, Tacksun
    • Journal of the Korean Mathematical Society
    • /
    • v.54 no.3
    • /
    • pp.821-833
    • /
    • 2017
  • We get a result that shows the existence of infinitely many solutions for a class of the elliptic systems involving subcritical Sobolev exponents nonlinear terms with even functionals on the bounded domain with smooth boundary. We get this result by variational method and critical point theory induced from invariant subspaces and invariant functional.

Utimate strength analysis of cylindrical members of offshore structure subject to combined loads (조합하중을 받는 해양구조물 원통부재의 최동강도 해석)

  • 박치모
    • Journal of Ocean Engineering and Technology
    • /
    • v.11 no.2
    • /
    • pp.11-17
    • /
    • 1997
  • Simple and efficient way of nonlinear analysis considering elasto-plastic large deformation is introduced to calculate the strength of ring-stiffened cylinears subject to combined load of axial compression and lateral pressure. Parametric study gives various collapse modes according to the combination ratio of axial compression and lateral pressure, interaction between axial compression and lateral pressure and imperfection sensitivity of ultimate strength.

  • PDF

A Closed Form Nonlinear Solution for Large Pure Bending Deformation of Solid Plate (고체 평판의 비선형 순수굽힘변형에 대한 수학적 정해)

  • Youngjoo Kwon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.220-225
    • /
    • 1998
  • 압축성 초탄성 평판의 순수굽힘에 대한 비선형 변형해석의 수학적 정해가 본 논문에 구해져 있다. 이차원 평면 변형도 상태가 해석을 위하여 가정되었으며, 비선형 순수굽힘 변형해석결과는 고전적인 선형 순수굽힘 변형해석결과와 비교되었다. 고전적인 선형굽힘 결과와는 다르게 비선형 순수굽힘 상태에서는 반경방향응력은 영이 아니며 또한 각방향응력도 선형 상태가 아닌 것으로 규명되었다.

  • PDF

Nonlinear Dynamic Characteristics of Gear Driving System with Tooth Modification (치형수정된 기어구동계의 비선형 동특성 해석)

  • Cho, Yun-Su;Park, Yeon-Sun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.11a
    • /
    • pp.311.1-311
    • /
    • 2002
  • To reduce the vibration of a gear driving system, the modification of gear tooth from the orignal involute gear profile is usually done in gear manufacturers. The quantity of the tooth modification has been decided on the basis of the intereference between two gear teeth during gear meshing and the elastic deformation due to loading. (omitted)

  • PDF

Simplified Seismic Response Analysis of a RC Bridge (철근콘크리트 교량의 단순화된 내진응답해석)

  • 이도형;전종수;박대효
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.949-954
    • /
    • 2003
  • In this paper, simplified modeling approach describing the hysteretic behavior of reinforced concrete columns is discussed. The inelastic response of a reinforced concrete column or pier subjected to cyclic deformation reversals or earthquake ground motion is evaluated by use of lumped hysteretic representation. For this purpose, the hystertic model under axial force variation is developed and implemented into a nonlinear finite element analysis program. The analytical predictions obtained with the new formulation are compared with test results and reveal accuracy and applicability in terms of strength and stiffness. In addition, comparison between results with and without axial force variation stresses the importance of the proposed approach.

  • PDF

Nonlinear analysis of stepped beam with immovable ends for free and forced vibration (양단고정된 변단면보의 자유 및 강제진동의 비선형해석)

  • 심재수;함원식
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1990.04a
    • /
    • pp.12-17
    • /
    • 1990
  • Stepped bean with immovable ends for large amplitude of vibration including effects of longitudinal displacement, shear deformation and rotary inertia is investigated for free and forced vibration using finite element method. Modified harmonic force matrix is introduced for analysis of vibration with finite amplitude of the stepped beam under uniform hamonic loading and beam with nonuniform harmonic loading. Numerical examples of stepped beam with various support conditions are analysed for deflections and natural frequencies. Results show that the proposed method is valid and efficient.

  • PDF

FSI Analysis of Structure Using Recursive Component Mode Synthesis (재귀 부분 합성법을 이용한 구조물 유체-고체 연성 해석)

  • Kim, Chang-Wan
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2010.04a
    • /
    • pp.215-216
    • /
    • 2010
  • 본 논문에서는 재귀 부분 구조 합성법을 이용하여 유체와 고체가 연성된 구조물에 대한 거동을 해석하였다. 이 방법은 일반적으로 널리 사용하는 랜쵸스 방법과 비교하여 몇 배나 빠른 계산 결과 시간에 문제를 풀었음에도 거의 동일한 해를 얻을 수 있는 장점이 있다.

  • PDF