• 제목/요약/키워드: nonlinear controller

검색결과 2,171건 처리시간 0.029초

미분기하학 방법을 이용한 비선형 가변구조 제어기 설계 (Design of nonlinear variable structure controller using differential geometric methods)

  • 함철주;함운철
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1993년도 한국자동제어학술회의논문집(국내학술편); Seoul National University, Seoul; 20-22 Oct. 1993
    • /
    • pp.1227-1233
    • /
    • 1993
  • In this paper we present the differential geometric approach for the analysis and design of sliding modes in nonlinear variable structure feedback systems. We also design the robust controller for the nonlinear system using variable structure control theory on the basis of differential geometric methods and feedback linearization applying Min-Max control based on the Lyapunov second method. The robustness against parameter uncertainties for robot manipulators with flexible joint is considered. Simulation results are presented and show the advantage of the proposed nonlinear control method.

  • PDF

제약조건을 갖는 다변수 모델 예측 제어기의 비선형 보일러 시스템에 대한 적용 (Constrained multivariable model based predictive control application to nonlinear boiler system)

  • 손원기;이명의;권오규
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1996년도 한국자동제어학술회의논문집(국내학술편); 포항공과대학교, 포항; 24-26 Oct. 1996
    • /
    • pp.160-163
    • /
    • 1996
  • This paper deals with MCMBPC(Multivariable Constrained Model Based Predictive Controller) for nonlinear boiler system with noise and disturbance. MCMBPC is designed by linear state space model obtained from some operating point of nonlinear boiler system and Kalman filter is used to estimate the state with noise and disturbance. The solution of optimization of the cost function constrained on input and/or output variables is achieved using quadratic programming, viz. singular value decomposition (SVD). The controller designed is shown to have excellent tracking performance via simulation applied to nonlinear dynamic drum boiler turbine model for 16OMW unit.

  • PDF

불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 신경망 제어기 설계 (Neural Network Controller with Dynamic Structure for nonaffine Nonlinear System)

  • 박장현;서호준;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.384-384
    • /
    • 2000
  • In adaptive neuro-control, neural networks are used to approximate the unknown plant nonlinearities. Until now, most of the papers in the field of controller design fur nonlinear system using neural networks considers the affine system with fixed number of neurons. This paper considers nonaffne nonlinear systems and dynamic variation of the number of neurons. Control laws and adaptive laws for weights are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Dynamic Inversion과 PI 제어를 이용한 견실한 유도탄 오토파일롯 설계 (Robust Missile Autopilot Design using Dynamic Inversion and PI Control)

  • 조성진
    • 한국군사과학기술학회지
    • /
    • 제10권2호
    • /
    • pp.53-60
    • /
    • 2007
  • This paper presents a robust nonlinear autopilot design method based on dynamic inversion and PI(Proportional-Integral) control law. The new controller structure which is different from previous work is composed of classical linear PI control law and nonlinear fast dynamic inversion. A pitch axis model of highly maneuverable missiles and a linearized model for designing Pl controller are presented. The performance of proposed method is illustrated via nonlinear simulations including aerodynamic uncertainties and actuator dynamics.

Prefilter 형태의 카오틱 신경망 속도보상기를 이용한 로봇 제어기 설계 (Prefilter Type Velocity Compensating Robot Controller Design using Modified Chaotic Neural Networks)

  • 홍수동;최운하;김상희
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제50권4호
    • /
    • pp.184-191
    • /
    • 2001
  • This paper proposes a prefilter type velocity compensating control system using modified chaotic neural networks for the trajectory control of robotic manipulator. Since the structure of modified chaotic neural networks(MCNN) and neurons have highly nonlinear dynamic characteristics, MCNN can show the robust characteristics for controlling highly nonlinear dynamics like robotic manipulators. For its application, the trajectory controller of the three-axis robot manipulator is designed by MCNN. The MCNN controller acts as the compensator of the PD controller. Simulation results show that learning error decrease drastically via on-line learning and the performance is excellent. The MCNN controller showed much better control performance and shorter calculation time compared to the RNN controller, Another advantage of the proposed controller could by attached to conventional robot controller without hardware changes.

  • PDF

비선형 연속 시간 시스템을 위한 적응 고장 진단 관측기 기반 슬라이딩 모드 제어기 설계 (Design of Sliding Mode Controller Based on Adaptive Fault Diagnosis Observer for Nonlinear Continuous-Time Systems)

  • 장승진;최윤호;박진배
    • 제어로봇시스템학회논문지
    • /
    • 제19권9호
    • /
    • pp.822-826
    • /
    • 2013
  • In this paper, we propose an AFDO (Adaptive Fault Diagnosis Observer) and a fault tolerant controller for a class of nonlinear continuous-time system under the nonlinear abrupt actuator faults. Together with its estimation laws, the AFDO which estimates that the actuator faults is designed by using the Lyapunov analysis. Then, based on the designed AFDO, an adaptive sliding mode controller is proposed as the fault tolerant controller. Using Lyapunov stability analysis, we also prove the uniform boundedness of the state, the output and the fault estimation errors, and the asymptotic stability of the tracking error under the nonlinear time-varying faults. Finally, we illustrate the effectiveness of the proposed diagnosis method and the control scheme thorough computer simulations.

묘사함수를 이용한 퍼지 제어시스템의 자기진동 현상의 예측-동적 경우 (The prediction of self-excited oscillation of a fuzzy control system based on the describing function dynamic case)

  • 김은태;노흥식;권철;김동연;박민용
    • 전자공학회논문지C
    • /
    • 제35C권5호
    • /
    • pp.41-49
    • /
    • 1998
  • This paper deals with the self-excited oscillation of a system that is controlled by a dynamic nonlinear fuzzy controller. The self-excited oscillation can be observed in the systems composed of nonlinear elements and its analysis is as important as that of stability in the design of nonlinear systems. by using the frequency transfer function analysis known as the describing function method in nonlinear control theory, the oscillation is theoretically predicted. First, the describing function of a dynamic fuzzy controller is derived and then, based on the derived describing fuction, self-excited oscillation of the system controlled by a dynamic fuzzy controller is predicted. To obtain the describing function of the dynamic fuzzy controller, a simple structure is assumed for the fuzzy controller.

  • PDF

비선형 PID 제어기의 최적 설계및 실제 적용 (Optimal design and real application of nonlinear PID controllers)

  • 이문용;구도균;이종민
    • 제어로봇시스템학회논문지
    • /
    • 제3권6호
    • /
    • pp.639-643
    • /
    • 1997
  • This paper presents how nonlinear PID control algorithms can be applied on chemical processes for a more stable operation and perfect automation. A pass balance controller is designed to balance the exiting temperatures of a heater and a heat exchange network. The proposed controller has gain-varying integral action and deals with the operational constraints in an efficient manner. Also, the use of a PID gap controller is proposed to maximize energy saving and operation stability and to minimize operator intervention in operation of air fan coolers. The proposed controller adjusts the opening of a louver automatically in such a way that it keeps the air fan pitch position within the desired range. All these nonlinear PID controllers have been implemented on the distributed control system (DCS) for good reliability and operability. Operator acceptance was very high and the implemented controllers have shown good performance and high service factor still now on. The proposed methodology can be directly applied to similar processes without any modification.

  • PDF

An auto weather-vaning system for a DP vessel that uses a nonlinear controller and a disturbance observer

  • Kim, Dae Hyuk;Kim, Nakwan
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제6권1호
    • /
    • pp.98-118
    • /
    • 2014
  • An auto weather-vaning system for a Dynamic Positioning (DP) vessel is proposed. When a DP vessel is operating, its position keeping is hindered by ocean environmental disturbances which include the ocean current, wave and wind. Generally, most ocean vessels have a longitudinal length that is larger than the transverse width. The largest load acts on the DP vessel by ocean disturbances, when the disturbances are incoming in the transverse direction. Weather-vaning is the concept of making the heading angle of the DP vessel head toward (or sway from) the disturbance direction. This enables the DP vessel to not only perform marine operations stably and safely, but also to maintain its position with minimum control forces (surge & sway components). To implement auto weather-vaning, a nonlinear controller and a disturbance observer are used. The disturbance observer transforms a real plant to the nominal model without disturbance to enhance the control performance. And the nonlinear controller deals with the kinematic nonlinearity. The auto weather-vaning system is completed by adding a weather-vaning algorithm to disturbance based controller. Numerical simulations of a semi-submersible type vessel were performed for the validation. The results show that the proposed method enables a DP vessel to maintain its position with minimum control force.

SynRM Driving CVT System Using an ARGOPNN with MPSO Control System

  • Lin, Chih-Hong;Chang, Kuo-Tsai
    • Journal of Power Electronics
    • /
    • 제19권3호
    • /
    • pp.771-783
    • /
    • 2019
  • Due to nonlinear-synthetic uncertainty including the total unknown nonlinear load torque, the total parameter variation and the fixed load torque, a synchronous reluctance motor (SynRM) driving a continuously variable transmission (CVT) system causes a lot of nonlinear effects. Linear control methods make it hard to achieve good control performance. To increase the control performance and reduce the influence of nonlinear time-synthetic uncertainty, an admixed recurrent Gegenbauer orthogonal polynomials neural network (ARGOPNN) with a modified particle swarm optimization (MPSO) control system is proposed to achieve better control performance. The ARGOPNN with a MPSO control system is composed of an observer controller, a recurrent Gegenbauer orthogonal polynomial neural network (RGOPNN) controller and a remunerated controller. To insure the stability of the control system, the RGOPNN controller with an adaptive law and the remunerated controller with a reckoned law are derived according to the Lyapunov stability theorem. In addition, the two learning rates of the weights in the RGOPNN are regulating by using the MPSO algorithm to enhance convergence. Finally, three types of experimental results with comparative studies are presented to confirm the usefulness of the proposed ARGOPNN with a MPSO control system.