• 제목/요약/키워드: nonexpansive nonself-mapping

검색결과 6건 처리시간 0.02초

VISCOSITY APPROXIMATIONS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • 제26권3호
    • /
    • pp.337-350
    • /
    • 2010
  • Strong convergence theorem of the explicit viscosity iterative scheme involving the sunny nonexpansive retraction for nonexpansive nonself-mappings is established in a reflexive and strictly convex Banach spaces having a weakly sequentially continuous duality mapping. The main result improves the corresponding result of [19] to the more general class of mappings together with certain different control conditions.

Approximating Common Fixed Points of One-step Iterative Scheme with Error for Asymptotically Quasi-nonexpansive Type Nonself-Mappings

  • Puturong, Narongrit
    • Kyungpook Mathematical Journal
    • /
    • 제49권4호
    • /
    • pp.667-674
    • /
    • 2009
  • In this paper, a new one-step iterative scheme with error for approximating common fixed points of asymptotically quasi-nonexpansive type nonself-mappings in Banach space is defined. The results obtained in this paper extend and improve the recent ones, announced by H. Y. Zhou, Y. J. Cho, and S. M. Kang [Zhou et al.,(2007), namely, A new iterative algorithm for approximating common fixed points for asymptotically non-expansive mappings, published to Fixed Point Theory and Applications 2007 : 1-9], and many others.

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR MULTIVALUED NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong Soo
    • Korean Journal of Mathematics
    • /
    • 제16권2호
    • /
    • pp.215-231
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T:C{\rightarrow}{\mathcal{K}}(E)$ a multivalued nonself-mapping such that $P_T$ is nonexpansive, where $P_T(x)=\{u_x{\in}Tx:{\parallel}x-u_x{\parallel}=d(x,Tx)\}$. For $f:C{\rightarrow}C$ a contraction and $t{\in}(0,1)$, let $x_t$ be a fixed point of a contraction $S_t:C{\rightarrow}{\mathcal{K}}(E)$, defined by $S_tx:=tP_T(x)+(1-t)f(x)$, $x{\in}C$. It is proved that if C is a nonexpansive retract of E and $\{x_t\}$ is bounded, then the strong ${\lim}_{t{\rightarrow}1}x_t$ exists and belongs to the fixed point set of T. Moreover, we study the strong convergence of $\{x_t\}$ with the weak inwardness condition on T in a reflexive Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm. Our results provide a partial answer to Jung's question.

  • PDF

CONVERGENCE OF APPROXIMATING FIXED POINTS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo;Park, Jong-Seo;Park, Eun-Hee
    • 대한수학회논문집
    • /
    • 제12권2호
    • /
    • pp.275-285
    • /
    • 1997
  • Let E be a uniformly convex Banach space with a uniformly G$\hat{a}teaux differentiable norm, C a nonempty closed convex subset of $E, T : C \to E$ a nonexpansive mapping, and Q a sunny nonexpansive retraction of E onto C. For $u \in C$ and $t \in (0,1)$, let $x_t$ be a unique fixed point of a contraction $R_t : C \to C$, defined by $R_tx = Q(tTx + (1-t)u), x \in C$. It is proved that if ${x_t}$ is bounded, then the strong $lim_{t\to1}x_t$ exists and belongs to the fixed point set of T. Furthermore, the strong convergence of ${x_t}$ in a reflexive and strictly convex Banach space with a uniformly G$\hat{a}$teaux differentiable norm is also given in case that the fixed point set of T is nonempty.

  • PDF

CONVERGENCE OF VISCOSITY APPROXIMATIONS TO FIXED POINTS OF NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Jung, Jong-Soo
    • East Asian mathematical journal
    • /
    • 제24권1호
    • /
    • pp.81-95
    • /
    • 2008
  • Let E be a uniformly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm, C a nonempty closed convex subset of E, and $T\;:\;C\;{\rightarrow}\;E$ a nonexpansive mapping satisfying the weak inwardness condition. Assume that every weakly compact convex subset of E has the fixed point property. For $f\;:\;C\;{\rightarrow}\;C$ a contraction and $t\;{\in}\;(0,\;1)$, let $x_t$ be a unique fixed point of a contraction $T_t\;:\;C\;{\rightarrow}\;E$, defined by $T_tx\;=\;tf(x)\;+\;(1\;-\;t)Tx$, $x\;{\in}\;C$. It is proved that if {$x_t$} is bounded, then $x_t$ converges to a fixed point of T, which is the unique solution of certain variational inequality. Moreover, the strong convergence of other implicit and explicit iterative schemes involving the sunny nonexpansive retraction is also given in a reflexive and strictly convex Banach space with a uniformly $G{\hat{a}}teaux$ differentiable norm.

  • PDF

COMMON FIXED POINTS OF TWO NONEXPANSIVE MAPPINGS BY A MODIFIED FASTER ITERATION SCHEME

  • Khan, Safeer Hussain;Kim, Jong-Kyu
    • 대한수학회보
    • /
    • 제47권5호
    • /
    • pp.973-985
    • /
    • 2010
  • We introduce an iteration scheme for approximating common fixed points of two mappings. On one hand, it extends a scheme due to Agarwal et al. [2] to the case of two mappings while on the other hand, it is faster than both the Ishikawa type scheme and the one studied by Yao and Chen [18] for the purpose in some sense. Using this scheme, we prove some weak and strong convergence results for approximating common fixed points of two nonexpansive self mappings. We also outline the proofs of these results to the case of nonexpansive nonself mappings.