References
- F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225. https://doi.org/10.1007/BF01109805
- Y. J. Cho, S. M. Kang and H. Y. Zhou, Some control conditions on iterative methods, Commun. Appl. Nonlinear Anal. 12 (2005), no.2, 27-34.
- I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
- K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
- B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
- J. S. Jung, Y. J. Cho and R. P. Agarwal, Iterative schemes with some control conditions for a family of nite nonexpansive mappings in Banach space, Fixed Point Theory and Appl. 2005-2 (2005), 125-135.
- J. S. Jung and T. H. Kim, Strong convergence of approximating xed points for nonex-pansive nonself-mappinfs in Banach spaces, Kodai Math. J. 21 (1998), 259-272. https://doi.org/10.2996/kmj/1138043939
- J. S. Jung and D. R. Sahu, Convergence of approximating paths to solutions of varia-tional inequalities involving non-Lipschitzian mappings, J. Korean Math. Soc. 45 (2008), no. 2, 377-392. https://doi.org/10.4134/JKMS.2008.45.2.377
- P. L. Lions, Approximation de points xes de contractions, C. R. Acad. Sci. Ser A-B, Paris 284 (1977), 1357-1359.
- L. S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125. https://doi.org/10.1006/jmaa.1995.1289
- G. Marino and G. Trombetta, On approximating xed points for nonexpansive maps, Indian J. Math. 34 (1992), 91-98.
- S. Matsushita and W. Takatashi, Strong convergence theorems for nonexpansive nonself-mappings without boundary conditions, Nonlinear Anal. 68 (2008), 412-419. https://doi.org/10.1016/j.na.2006.11.007
- C. H. Morales, on the xed-point theory for local k-pseudocontractions, Proc. Amer. Math. Soc. 81 (1981), 71-74.
- C. H. Morales and J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), 3411-3419 https://doi.org/10.1090/S0002-9939-00-05573-8
- A. Mouda, Viscosity approximation methods for xed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
- J. G. O'Hara, P. Pillay and H. K. Xu, Iterative approaches to convex feasibity problems in Banach spaces, Nonlinear Anal. 64 (2006), 2022-2042. https://doi.org/10.1016/j.na.2005.07.036
- S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
- N. Shioji and W. Takahashi, Strong convergence of approximated sequences for non-expansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641-3645. https://doi.org/10.1090/S0002-9939-97-04033-1
- Y. Song and R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006), 316-326. https://doi.org/10.1016/j.jmaa.2005.07.025
- R. Wittmann, Approximation of xed points of nonexpansive mappings, Arch. Math. 59 (1992), 486-491
- H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 2, 240-256. https://doi.org/10.1112/S0024610702003332
- H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059
- H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive op-erators, J. Math. Anal. Appl. 314 (2006), 631-634. https://doi.org/10.1016/j.jmaa.2005.04.082
- H. K. Xu and X. M. Yin, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Anal. 24 (1995), 223-228. https://doi.org/10.1016/0362-546X(94)E0059-P