DOI QR코드

DOI QR Code

VISCOSITY APPROXIMATIONS FOR NONEXPANSIVE NONSELF-MAPPINGS IN BANACH SPACES

  • Received : 2009.01.02
  • Accepted : 2010.01.05
  • Published : 2010.05.31

Abstract

Strong convergence theorem of the explicit viscosity iterative scheme involving the sunny nonexpansive retraction for nonexpansive nonself-mappings is established in a reflexive and strictly convex Banach spaces having a weakly sequentially continuous duality mapping. The main result improves the corresponding result of [19] to the more general class of mappings together with certain different control conditions.

Keywords

References

  1. F. E. Browder, Convergence theorems for sequences of nonlinear operators in Banach spaces, Math. Z. 100 (1967), 201-225. https://doi.org/10.1007/BF01109805
  2. Y. J. Cho, S. M. Kang and H. Y. Zhou, Some control conditions on iterative methods, Commun. Appl. Nonlinear Anal. 12 (2005), no.2, 27-34.
  3. I. Cioranescu, Geometry of Banach spaces, Duality Mappings and Nonlinear Problems, Kluwer Academic Publishers, Dordrecht, 1990.
  4. K. Goebel and S. Reich, Uniform Convexity, Hyperbolic Geometry and Nonexpansive Mappings, Marcel Dekker, New York and Basel, 1984.
  5. B. Halpern, Fixed points of nonexpansive maps, Bull. Amer. Math. Soc. 73 (1967), 957-961. https://doi.org/10.1090/S0002-9904-1967-11864-0
  6. J. S. Jung, Y. J. Cho and R. P. Agarwal, Iterative schemes with some control conditions for a family of nite nonexpansive mappings in Banach space, Fixed Point Theory and Appl. 2005-2 (2005), 125-135.
  7. J. S. Jung and T. H. Kim, Strong convergence of approximating xed points for nonex-pansive nonself-mappinfs in Banach spaces, Kodai Math. J. 21 (1998), 259-272. https://doi.org/10.2996/kmj/1138043939
  8. J. S. Jung and D. R. Sahu, Convergence of approximating paths to solutions of varia-tional inequalities involving non-Lipschitzian mappings, J. Korean Math. Soc. 45 (2008), no. 2, 377-392. https://doi.org/10.4134/JKMS.2008.45.2.377
  9. P. L. Lions, Approximation de points xes de contractions, C. R. Acad. Sci. Ser A-B, Paris 284 (1977), 1357-1359.
  10. L. S. Liu, Iterative processes with errors for nonlinear strongly accretive mappings in Banach spaces, J. Math. Anal. Appl. 194 (1995), 114-125. https://doi.org/10.1006/jmaa.1995.1289
  11. G. Marino and G. Trombetta, On approximating xed points for nonexpansive maps, Indian J. Math. 34 (1992), 91-98.
  12. S. Matsushita and W. Takatashi, Strong convergence theorems for nonexpansive nonself-mappings without boundary conditions, Nonlinear Anal. 68 (2008), 412-419. https://doi.org/10.1016/j.na.2006.11.007
  13. C. H. Morales, on the xed-point theory for local k-pseudocontractions, Proc. Amer. Math. Soc. 81 (1981), 71-74.
  14. C. H. Morales and J. S. Jung, Convergence of paths for pseudo-contractive mappings in Banach spaces, Proc. Amer. Math. Soc. 128 (2000), 3411-3419 https://doi.org/10.1090/S0002-9939-00-05573-8
  15. A. Mouda, Viscosity approximation methods for xed-points problems, J. Math. Anal. Appl. 241 (2000), 46-55. https://doi.org/10.1006/jmaa.1999.6615
  16. J. G. O'Hara, P. Pillay and H. K. Xu, Iterative approaches to convex feasibity problems in Banach spaces, Nonlinear Anal. 64 (2006), 2022-2042. https://doi.org/10.1016/j.na.2005.07.036
  17. S. Reich, Strong convergence theorems for resolvents of accretive operators in Banach spaces, J. Math. Anal. Appl. 75 (1980), 287-292. https://doi.org/10.1016/0022-247X(80)90323-6
  18. N. Shioji and W. Takahashi, Strong convergence of approximated sequences for non-expansive mappings in Banach spaces, Proc. Amer. Math. Soc. 125 (1997), no. 12, 3641-3645. https://doi.org/10.1090/S0002-9939-97-04033-1
  19. Y. Song and R. Chen, Viscosity approximation methods for nonexpansive nonself-mappings, J. Math. Anal. Appl. 321 (2006), 316-326. https://doi.org/10.1016/j.jmaa.2005.07.025
  20. R. Wittmann, Approximation of xed points of nonexpansive mappings, Arch. Math. 59 (1992), 486-491
  21. H. K. Xu, Iterative algorithms for nonlinear operators, J. London Math. Soc. 66 (2002), no. 2, 240-256. https://doi.org/10.1112/S0024610702003332
  22. H. K. Xu, Viscosity approximation methods for nonexpansive mappings, J. Math. Anal. Appl. 298 (2004), 279-291. https://doi.org/10.1016/j.jmaa.2004.04.059
  23. H. K. Xu, Strong convergence of an iterative method for nonexpansive and accretive op-erators, J. Math. Anal. Appl. 314 (2006), 631-634. https://doi.org/10.1016/j.jmaa.2005.04.082
  24. H. K. Xu and X. M. Yin, Strong convergence theorems for nonexpansive nonself-mappings, Nonlinear Anal. 24 (1995), 223-228. https://doi.org/10.1016/0362-546X(94)E0059-P