• 제목/요약/키워드: nonaffine nonlinear system

검색결과 13건 처리시간 0.055초

비-어파인 비선형 동특성을 갖는 무인 자율 이동 보트의 속도 제어를 위한 적응 퍼지 제어 계통 (An Adaptive Fuzzy Control System for the Speed Control of the Autonomous Surface Vehicle with Nonaffine Nonlinear Dynamics)

  • 박영환;이재경
    • 제어로봇시스템학회논문지
    • /
    • 제18권1호
    • /
    • pp.1-6
    • /
    • 2012
  • In this paper, an adaptive fuzzy control system is proposed for the speed control of the ASV (Autonomous Surface Vehicle) with nonaffine nonlinear system dynamics. We consider the turning speed of the screw propeller to be the control input instead of thrust so that we do not have to know the exact function between turning speed and thrust. But in this case, the ASV becomes a nonaffine nonlinear system because thrust is a nonlinear function of the turning speed. To solve this problem, we propose a Takagi-Sugeno fuzzy-model-based control system and simulation studies are performed. Simulation results show the effectiveness of the proposed control scheme.

불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 적응 신경망 제어기 설계 (Robust Adaptive Neural Network Controller with Dynamic Structure for Nonaffine Nolinear Systems)

  • 박장현;박귀태
    • 제어로봇시스템학회논문지
    • /
    • 제7권8호
    • /
    • pp.647-655
    • /
    • 2001
  • In adaptive neuro-control, neural networks are used to approximate unknown plant nonlinearities. Until now, most of the studies in the field of controller design for nonlinear system using neural network considers the affine system with fixed number of neurons. This paper considers nonaffine nonlinear systems and on-line variation of the number of neurons. A control law and adaptive laws for neural network weights are established so that the whole system is stable in the sense of Lyapunov. In addition, at the expense of th input, tracking error converges to the arbitrary small neighborhood of the origin. The efficiency of the proposed scheme is shown through simulations ofa simple nonaffine nonlinear system.

  • PDF

Indirect Adaptive Fuzzy Sliding Mode Control for Nonaffine Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.145-150
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

Design of a Fuzzy Model Based Sliding Mode Control for Nonlinear Systems

  • Seo, Sam-Jun;Kim, Dong-Sik
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2005년도 ICCAS
    • /
    • pp.1516-1520
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control a nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.

  • PDF

비어파인 비선형 시스템에 대한 직접 적응 퍼지 제어기 (Direct Adaptive Fuzzy Controller for Nonaffine Nonlinear System)

  • 박장현;김성환;박영환
    • 대한전기학회논문지:시스템및제어부문D
    • /
    • 제53권5호
    • /
    • pp.315-322
    • /
    • 2004
  • A direct adaptive state-feedback controller for highly nonlinear systems is proposed. This paper considers uncertain or ill-defined nonaffine nonlinear systems and employs a static fuzzy logic system (FLS). The employed FLS estimates. and adaptively cancels an unknown plant nonlinearity using its proved universal approximation property. A control law and adaptive laws for unknown fuzzy parameters and bounding constant are established so that the whole closed-loop system is stable in the sense of Lyapunov. The tracking error is guaranteed to be uniformly asymptotically stable rather than uniformly ultimately bounded with the aid of an additional robustifying control term. No a priori knowledge of an upper bound on an lumped uncertainty is required.

비어파인 비선형 계통에 대한 적응 퍼지 슬라이딩 모드 제어기 (Adaptive Fuzzy Sliding-Mode Controller for Nonaffine Nonlinear Systems)

  • 박장현;김성환;유영재;문채주
    • 전력전자학회:학술대회논문집
    • /
    • 전력전자학회 2005년도 전력전자학술대회 논문집
    • /
    • pp.697-700
    • /
    • 2005
  • An adaptive fuzzy sliding-mode controller (SMC) for uncertain or ill-defined single-input single-output (SISO) nonaffine nonlinear systems is proposed. By using the universal approximation property of the fuzzy logic system (FLS), it is tuned on-line to cancel the unknown system nonlinearity. We adopt a self-structuring FLS to guarantee global stability of the closed-loop system rather than semi=global boundedness. The control and adaptive laws are derived so that the estimated fuzzy parameters are bounded and the sliding condition is satisfied.

  • PDF

불확실한 비선형 계통에 대한 동적인 구조를 가지는 강인한 신경망 제어기 설계 (Neural Network Controller with Dynamic Structure for nonaffine Nonlinear System)

  • 박장현;서호준;박귀태
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2000년도 제15차 학술회의논문집
    • /
    • pp.384-384
    • /
    • 2000
  • In adaptive neuro-control, neural networks are used to approximate the unknown plant nonlinearities. Until now, most of the papers in the field of controller design fur nonlinear system using neural networks considers the affine system with fixed number of neurons. This paper considers nonaffne nonlinear systems and dynamic variation of the number of neurons. Control laws and adaptive laws for weights are established so that the whole system is stable in the sense of Lyapunov.

  • PDF

Direct and Indirect Robust Adaptive Fuzzy Controllers for a Class of Nonlinear Systems

  • Essounbouli Najib;Hamzaoui Abdelaziz
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권2호
    • /
    • pp.146-154
    • /
    • 2006
  • In this paper, we propose direct and indirect adaptive fuzzy sliding mode control approaches for a class of nonaffine nonlinear systems. In the direct case, we use the implicit function theory to prove the existence of an ideal implicit feedback linearization controller, and hence approximate it to attain the desired performances. In the indirect case, we exploit the linear structure of a Takagi-Sugeno fuzzy system with constant conclusion to establish an affine-in-control model, and therefore design an indirect adaptive fuzzy controller. In both cases, the adaptation laws of the adjustable parameters are deduced from the stability analysis, in the sense of Lyapunov, to get a more accurate approximation level. In addition to their robustness, the design of the proposed approaches does not require the upper bounds of both external disturbances and approximation errors. To show the efficiency of the proposed controllers, a simulation example is presented.

Adaptive Fuzzy Sliding Mode Controller for Nonaffine Nonlinear Systems

  • Park, Jang-Hyun;Kim, Dong-Won;Huh, Sung-Hoe;Park, Gwi-Tae
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.62.6-62
    • /
    • 2002
  • $\textbullet$ Introduction $\textbullet$ Problem Formulation $\textbullet$ Feedback Linearizing Controller Design $\textbullet$ Fuzzy System to Cancel System Uncertainty $\textbullet$ Adatptive Fuzzy Sliding Mode Controller Design $\textbullet$ Simulations $\textbullet$ Conclusions

  • PDF

완전 궤환 비선형 계통에 대한 자기 구조화 퍼지 시스템을 이용한 상태변수 및 출력 궤환 적응 제어기 (State- and Output-feedback Adaptive Controller for Pure-feedback Nonlinear Systems using Self-structuring Fuzzy System)

  • 박장현;김성환;장영학;유영재
    • 전기학회논문지
    • /
    • 제61권9호
    • /
    • pp.1319-1329
    • /
    • 2012
  • Globally stabilizing adaptive fuzzy state- and output-feedback controllers for the fully nonaffine pure-feedback nonlinear system are proposed in this paper. By reformulating the original pure-feedback system to a standard normal form with respect to newly defined state variables, the proposed controllers require no backstepping design procedures. Avoiding backstepping makes the controller structure and stability analysis to be considerably simplified. For the global stabilty of the clossed-loop system, the self-structuring fuzzy system whose memebership functions and fuzzy rules are automatically generated and tuned is adopted. The proposed controllers employ only one fuzzy logic system to approximate unknown nonlinear function, which highlights the simplicity of the proposed adaptive fuzzy controller. Moreover, the output-feedback controller of the considered system proposed in this paper have not been dealt with in any literature yet.