• 제목/요약/키워드: non-slender

검색결과 97건 처리시간 0.028초

비 Froude수에 있어서 선체의 조파저항 (Wave Resistance of a Ship at Low Froude Numbers)

  • 김인철
    • 수산해양기술연구
    • /
    • 제17권2호
    • /
    • pp.109-113
    • /
    • 1981
  • Most existing theories on ship waves and wave resistance are based on the perturbation of the flow field by a small pararr.eter which specifies the slenderness of the ship hull. Since however, ship hulls in practice are neither so slender nor thin enough to secure the validity of the linearized theory, the agreen:ent between the theoretical prediction and the experimental result is not generally satisfactory. The author pointed out that the contribution by the non-linear term in the free surface condition can be represented by sorr.e source distribution over the still water plane. This paper leads to a forrr.ula for the wave resistance of not slender ships at low Froude nurr.bers. and deals with the asynptotic expression. As a nurr.erical example, the wave resistance of Wigley model is calculated, and the result is compared with experimental values. It is concluded that the wave resistance coefficient varies in the rate of Fn6 at low speed limit in general. A comparison with the result derived from the linearized free surface condition shows that the non-linearity of the free surface is irr portant at low speed.

  • PDF

LRFD에 의한 연속보 주부재의 조밀 및 비조밀 단면 최적화 설계 (Optimal Design of I-type Girders in 2-Span Continuous Steel Bridges by LRFD)

  • 국중식;신영석
    • 한국강구조학회 논문집
    • /
    • 제12권3호통권46호
    • /
    • pp.329-337
    • /
    • 2000
  • 하중-저항계수 설계법(LFRD)에 따르면, 단면 형상은 압축 요소의 폭-두께비 및 브레이스 조건에 따라 조밀, 비조밀, slender로 나누어 설계가 되어지고 있다. 본 논문에서는 LRFD시방서의 내용을 기준으로 2경간 연속보의 주형인 I형 거더를 조밀단면과 비조밀단면으로 나누어 설계하였으며, 최적화 기법을 도입하여 단면을 설계하였다. 본 연구는 최적화 기법을 이용하여 조밀 및 비조밀 단면에서의 단면 형상의 변화를 고찰하였다.

  • PDF

직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석 (Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh)

  • 한명륜;안형택
    • 대한조선학회논문집
    • /
    • 제48권3호
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

Analytic solution of Timoshenko beam excited by real seismic support motions

  • Kim, Yong-Woo
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.247-258
    • /
    • 2017
  • Beam-like structures such as bridge, high building and tower, pipes, flexible connecting rods and some robotic manipulators are often excited by support motions. These structures are important in machines and structures. So, this study proposes an analytic method to accurately predict the dynamic behaviors of the structures during support motions or an earthquake. Using Timoshenko beam theory which is valid even for non-slender beams and for high-frequency responses, the analytic responses of fixed-fixed beams subjected to a real seismic motions at supports are illustrated to show the principled approach to the proposed method. The responses of a slender beam obtained by using Timoshenko beam theory are compared with the solutions based on Euler-Bernoulli beam theory to validate the correctness of the proposed method. The dynamic analysis for the fixed-fixed beam subjected to support motions gives useful information to develop an understanding of the structural behavior of the beam. The bending moment and the shear force of a slender beam are governed by dynamic components while those of a stocky beam are governed by static components. Especially, the maximal magnitudes of the bending moment and the shear force of the thick beam are proportional to the difference of support displacements and they are influenced by the seismic wave velocity.

Textural Properties of Processed Foods Produced from Newly Developed Non-Glutinous Rice Cultivars

  • Ha, Mi-Sun;Roh, Yi-Woo;Hong, Kwon-Pyo;Kang, Yoon-Suk;Jung, Dong-Chae;Kim, Kwang-Ho;Park, Sang-Kyu;Ha, Sang-Do;Bae, Dong-Ho
    • Food Science and Biotechnology
    • /
    • 제16권5호
    • /
    • pp.789-795
    • /
    • 2007
  • This study was undertaken to investigate the producibility of processed foods utilizing 6 newly developed non-glutinous rice cultivars. First, cooked rice, cake, cookies, bread, and slender rice cake sticks were prepared with the newly developed cultivars; then their physicochemical and textural properties were evaluated. The rice samples had similar pasting temperatures and peak times, but different viscosities and other pasting properties. The textural analysis results suggested that 'Chucheong' was appropriate for cooked rice due to its low amylose content; hardness, and springiness; 'Ilphumbyeo' for rice cakes due to its high amylose content, moderate cohesiveness and adhesiveness, and low hardness; 'Ilphumbyeo' for cookies due to its high amount of protein, and low cohesiveness and adhesiveness; 'Ilphumbyeo' for bread due to its high amylose content, moderate hardness, and low consistency; and 'Ilphumbyeo' for the slender rice cake sticks due to its low hardness, moderate breakdown, paste viscosity, and setback.

원통연삭 실험자료를 이용한 트래버스 연삭공정중의 형상예측 (Prediction of Form Accuracy during Traverse Grinding of Slender Workpiece Using the Cylindrical Prunge Grinding Data)

  • 박철우;이상조
    • 한국정밀공학회지
    • /
    • 제17권3호
    • /
    • pp.174-183
    • /
    • 2000
  • Non-Parallelism the axial direction occurs during grinding process of long slender shafts. The reason for the axial error is due to elastic deformation of the components, accumulation phenomenon of the grinding and wheel wear during the grinding process. The accumulation phenomenon, the size generation mechanism and the wheel wear process during traverse grinding result in complicated process at each step on the wheel surface. The grinding system stiffness obtained from the stiffness of the center on the tailstock and the workpiece varing according to the relative position of the wheel and the workpiece. Further more, the value of wheel wear increases as the grinding process advances. The above mentioned issues make the shape generation process during traverse grinding quite complicated. This research analyzes the shape generation process in the direction of the work spindle. First, the formulation of the grinding system stiffness was conducted and the simulation analysis method of the traverse grinding was established. Also, a measuring system for assessing the dimensinal accuracy of the workpiece has been developed.

  • PDF

Extension of theoretical approaches for the shear strength of reinforced concrete beams with corroded stirrups

  • Pier Paolo Rossi;Nino Spinella
    • Computers and Concrete
    • /
    • 제31권1호
    • /
    • pp.33-52
    • /
    • 2023
  • This paper proposes and validates the extension of two models, previously formulated for the evaluation of the shear strength of reinforced concrete members with un-corroded reinforcements, to the case of beams with corroded stirrups. These extended models are based on the plasticity theory (this model has been proposed in the past by one of the authors) and on the simplified modified compression field theory. The response of these models is compared with that of the compression chord capacity model, which has recently been embedded with modifications that simulate the effects of steel corrosion. These latter modifications are first discussed and then introduced into the other two models. An existing database of slender and non-slender beams tested in laboratory by other researchers is revised and improved. Finally, all the considered models are applied to the selected specimens and a comparison is drawn between the shear strength resulting from the considered models and the shear strength resulting from the laboratory tests. The effects of corrosion on some important parameters of the ultimate shear response of the reinforced concrete beams are also discussed.

HSB 강거더의 비탄성 횡비틂좌굴에 의한 휨강도 - 세장 복부판 단면 (Flexural Strength of HSB Steel Girders Due to Inelastic Lateral-Torsional Buckling - Sections with Slender Web)

  • 조은영;신동구
    • 한국강구조학회 논문집
    • /
    • 제24권2호
    • /
    • pp.217-231
    • /
    • 2012
  • HSB 고강도 강재를 적용한 균일모멘트를 받는 세장 복부판을 갖는 강거더에 대하여 비탄성 횡비틂좌굴 거동을 상용 ABAQUS 프로그램을 이용하여 비선형 유한요소해석으로 분석하였다. 해석대상 강거더는 압축플랜지의 국부좌굴이 휨강도를 지배하지 않도록 플랜지는 조밀 또는 비조밀 요소에 해당하는 세장비를 갖도록 설계하였으며, 횡방향 비지지길이는 탄성 횡비틂좌굴 강도 이상의 휨강도를 갖도록 선정하였다. HSB600 및 HSB800 강재로 제작된 균질단면 강거더와 HSB800과 SM570-TMC 강재를 동시에 적용한 하이브리드 단면를 고려하였고, 일반강재와의 상대적인 비교를 위하여 SM490-TMC 균질단면 강거더에 대한 해석도 수행하였다. 비선형 유한요소해석 시에는 플랜지와 복부판을 쉘요소로, 강재는 탄소성-변형경화 재료로 모델링하였다. 초기변형과 단면의 잔류응력을 고려하였으며 이들이 비탄성 횡비틂좌굴 영역에서 휨거동에 미치는 영향을 분석하였다. 총 64개의 해석대상 강거더에 대하여 FE 해석과 설계식에 의한 휨저항강도를 비교한 결과, HSB 강재를 적용한 균질단면 및 하이브리드 단면 거더의 비탄성 횡비틂좌굴에 의한 휨강도는 현 AASHTO LRFD 압축플랜지 휨강도 탄성 설계규정을 적용하여 산정할 수 있는 것으로 분석되었다.

Non-dimensional analysis of cylindrical objects freely dropped into water in two dimensions (2D)

  • Zhen, Yi;Yu, Xiaochuan;Meng, Haozhan;Li, Linxiong
    • Ocean Systems Engineering
    • /
    • 제10권3호
    • /
    • pp.267-287
    • /
    • 2020
  • The dropped objects are identified as one of the top ten causes of fatalities and serious injuries in the oil and gas industry. It is of importance to understand dynamics of dropped objects under water to accurately predict the motion of dropped objects and protect the underwater structures and facilities from being damaged. In this paper, we study non-dimensionalization of two-dimensional (2D) theory for dropped cylindrical objects. Non-dimensionalization helps to reduce the number of free parameters, identify the relative size of effects of force and moments, and gain a deeper insight of the essential nature of dynamics of dropped cylindrical objects under water. The resulting simulations of dimensionless trajectory confirms that drop angle, trailing edge and drag coefficient have the significant effects on dynamics of trajectories and landing location of dropped cylindrical objects under water.

Large deflection behavior and stability of slender bars under self weight

  • Goncalves, Paulo B.;Jurjo, Daniel Leonardo B.R.;Magluta, Carlos;Roitman, Ney;Pamplona, Djenane
    • Structural Engineering and Mechanics
    • /
    • 제24권6호
    • /
    • pp.709-725
    • /
    • 2006
  • In this paper the buckling and post-buckling behavior of slender bars under self-weight are studied. In order to study the post-buckling behavior of the bar, a geometrically exact formulation for the non-linear analysis of uni-directional structural elements is presented, considering arbitrary load distribution and boundary conditions. From this formulation one obtains a set of first-order coupled nonlinear equations which, together with the boundary conditions at the bar ends, form a two-point boundary value problem. This problem is solved by the simultaneous use of the Runge-Kutta integration scheme and the Newton-Raphson method. By virtue of a continuation algorithm, accurate solutions can be obtained for a variety of stability problems exhibiting either limit point or bifurcational-type buckling. Using this formulation, a detailed parametric analysis is conducted in order to study the buckling and post-buckling behavior of slender bars under self-weight, including the influence of boundary conditions on the stability and large deflection behavior of the bar. In order to evaluate the quality and accuracy of the results, an experimental analysis was conducted considering a clamped-free thin-walled metal bar. As this kind of structure presents a high index of slenderness, its answers could be affected by the introduction of conventional sensors. In this paper, an experimental methodology was developed, allowing the measurement of static or dynamic displacements without making contact with the structure, using digital image processing techniques. The proposed experimental procedure can be used to a wide class of problems involving large deflections and deformations. The experimental buckling and post-buckling behavior compared favorably with the theoretical and numerical results.