DOI QR코드

DOI QR Code

Extension of theoretical approaches for the shear strength of reinforced concrete beams with corroded stirrups

  • Pier Paolo, Rossi (Department of Civil Engineering and Architecture, University of Catania) ;
  • Nino, Spinella (Department of Civil Engineering and Architecture, University of Catania)
  • Received : 2021.06.01
  • Accepted : 2022.11.10
  • Published : 2023.01.25

Abstract

This paper proposes and validates the extension of two models, previously formulated for the evaluation of the shear strength of reinforced concrete members with un-corroded reinforcements, to the case of beams with corroded stirrups. These extended models are based on the plasticity theory (this model has been proposed in the past by one of the authors) and on the simplified modified compression field theory. The response of these models is compared with that of the compression chord capacity model, which has recently been embedded with modifications that simulate the effects of steel corrosion. These latter modifications are first discussed and then introduced into the other two models. An existing database of slender and non-slender beams tested in laboratory by other researchers is revised and improved. Finally, all the considered models are applied to the selected specimens and a comparison is drawn between the shear strength resulting from the considered models and the shear strength resulting from the laboratory tests. The effects of corrosion on some important parameters of the ultimate shear response of the reinforced concrete beams are also discussed.

Keywords

Acknowledgement

This study was supported by: the University of Catania within the research project "DU.SO.CA.P. Durabilita e SOstenibilita delle strutture in Cemento Armato e Precompresso", the research program "PIAno di inCEntivi per la RIcerca di Ateneo 2020/2022 (PIA.CE.RI.) -Starting Grant-Linea di intervento 3", the research project "Definizione e validazione di procedure di progetto di interventi di adeguamento sismico di edifici in c.a mediante pareti oscillanti", and the research project "PIAno di inCEntivi per la RIcerca di Ateneo 2020/2022 (PIA.CE.RI.) - Linea di intervento 2". Special thanks are due to the Italian Superior Council of Public Works (CC.SS.LL.PP.), and the Network of University Laboratories of Seismic Engineering (RELUIS). The results were achieved in the national technical agreement for implementing the agreement pursuant to art. 15 law 7 Aug. 1990, No. 241 between the Superior Council of Public Works and RELUIS.

References

  1. Andisheh, K., Scott, A. and Palermo, A. (2019), "Experimental evaluation of the residual compression strength and ultimate strain of chloride corrosion-induced damaged concrete", Struct. Concrete, 20(1), 296-306. https://doi.org/10.1002/suco.201800108.
  2. Andisheh, K., Scott, A. and Palermo, A. (2021), "Effects of corrosion on stress-strain behavior of confined concrete", J. Struct. Eng., 147(7), 4021087. https://doi.org/10.1061/(ASCE)ST.1943-541X.0003005.
  3. Bairan, J.M., Menduina, R., Mari, A. and Cladera, A. (2020), "Shear strength of non-slender reinforced concrete beams", ACI Struct. J., 117(2), 277-289. https://doi.org/10.14359/51721369.
  4. Bentz, E.C., Vecchio, F.J. and Collins, M.P. (2006), "Simplified modified compression field theory for calculating shear strength of reinforced concrete elements", ACI Struct. J., 103(4), 614-624. https://doi.org/10.14359/16438.
  5. Cairns, J., Plizzari, G.A., Du, Y., Law, D.W. and Franzoni, C. (2005), "Mechanical properties of corrosion-damaged reinforcement", ACI Mater. J., 102(4), 256-264. https://doi.org/10.14359/14619.
  6. CEN (2005), Eurocode 2-Design of Concrete Structures: Part 1-1. General Rules and Rules for Buildings, CEN 1992-1-1.
  7. Chen, H.P. and Nepal, J. (2017), "Effect of cover cracking on reliability of corroded reinforced concrete structures", Comput. Concrete, 20(5), 511-519. https://doi.org/10.12989/cac.2017.20.5.511.
  8. Cladera, A., Mari, A. and Ribas, C. (2021), "Mechanical model for the shear strength prediction of corrosion-damaged reinforced concrete slender and non slender beams", Eng. Struct., 247, 113163. https://doi.org/10.1016/j.engstruct.2021.113163.
  9. Cladera, A., Mari, A., Bairan, J.M., Ribas, C., Oller, E. and Duarte, N. (2016), "The compression chord capacity model for the shear design and assessment of reinforced and prestressed concrete beams", Struct. Concrete, 17(6), 1017-1032. https://doi.org/10.1002/suco.201500214.
  10. Coronelli, D. and Gambarova, P. (2004), "Struct. assessment of corroded reinforced concrete beams: Modeling guidelines", J. Struct. Eng., 130(8), 1214-1224. https://doi.org/10.1061/(ASCE)0733-9445(2004)130:8(1214).
  11. Du, Y.G., Clark, L.A. and Chan, A.H.C. (2005), "Effect of corrosion on ductility of reinforcing bars", Mag. Concrete Res., 57(7), 407-419. https://doi.org/10.1680/macr.2005.57.7.407.
  12. El-Sayed, A.K. (2017), "Shear capacity assessment of reinforced concrete beams with corroded stirrups", Constr. Build. Mater., 134, 176-184. https://doi.org/10.1016/j.conbuildmat.2016.12.118.
  13. Fernandez, I., Bairan, J.M. and Mari, A.R. (2015), "Corrosion effects on the mechanical properties of reinforcing steel bars. Fatigue and σ-ε behavior", Constr. Build. Mater., 101, 772-783. https://doi.org/10.1016/j.conbuildmat.2015.10.139.
  14. Finozzi, I., Saetta, A. and Budelmann, H. (2018), "Struct. response of reinforcing bars affected by pitting corrosion: experimental evaluation", Constr. Build. Mater., 192, 478-488. https://doi.org/10.1016/j.conbuildmat.2018.10.088.
  15. Giordano, L., Mancini, G. and Tondolo, F. (2009), "Numerical interpretation of bond between steel and concrete in presence of corrosion and cyclic action", Key Eng. Mater., 417-418, 349-352. https://doi.org/10.4028/www.scientific.net/kem.417-418.349.
  16. Higgins, C. and Farrow, W.C. (2006), "Tests of reinforced concrete beams with corrosion-damaged stirrups", ACI Struct. J., 103(1), 133-141. https://doi.org/10.14359/15094.
  17. Higgins, C., Farrow III, W.C., Potisuk, T., Miller, T.H., Yim, S.C., Holcomb, G.R., ... & Matthes, S.A. (2003), "Shear capacity assessment of corrosion-damaged reinforced concrete beams", No. FHWA-OR-RD-04-06, Dept. of Transportation. Research Unit, Oregon.
  18. Imam, A. and Azad, A.K. (2016), "Prediction of residual shear strength of corroded reinforced concrete beams", Int. J. Adv. Struct. Eng., 8(3), 307-318. https://doi.org/10.1007/S40091-016-0133-X.
  19. Imperatore, S., Rinaldi, Z. and Drago, C. (2017), "Degradation relationships for the mechanical properties of corroded steel rebars", Constr. Build. Mater., 148, 219-230. https://doi.org/10.1016/j.conbuildmat.2017.04.209.
  20. Juarez, C.A., Guevara, B., Fajardo, G. and Castro-Borges, P. (2011), "Ultimate and nominal shear strength in reinforced Concrete beams deteriorated by corrosion", Eng. Struct., 33(12), 3189-3196. https://doi.org/10.1016/j.engstruct.2011.08.014.
  21. Li, X. and Yin, H. (2010), "Degradation mechanism and predicting models of shearing capacity for corroded reinforced concrete beams", J. Xuzhou Inst. Tech.: Nat. Sci. Ed., 25(4), 58-63. https://doi.org/10.3969/j.issn.1674-358X.2010.04.013
  22. Lin, H., Zhao, Y., Feng, P., Ye, H., Ozbolt, J., Jiang, C. and Yang, J.Q. (2019), "State-of-the-art review on the bond properties of corroded reinforcing steel bar", Constr. Build. Mater., 213, 216-233. https://doi.org/10.1016/j.conbuildmat.2019.04.077.
  23. Lu, Z.H., Li, H., Li, W., Zhao, Y.G. and Dong, W. (2018), "An empirical model for the shear strength of corroded reinforced concrete beam", Constr. Build. Mater., 188, 1234-1248. https://doi.org/10.1016/j.conbuildmat.2018.08.123.
  24. Lu, Z.H., Li, H., Li, W., Zhao, Y.G., Tang, Z. and Sun, Z. (2019), "Shear behavior degradation and failure pattern of reinforced Concrete beam with chloride-induced stirrup corrosion", Adv. Struct. Eng., 22(14), 2998-3010. https://doi.org/10.1177/1369433219855917.
  25. Mari, A., Bairan, J., Cladera, A., Oller, E. and Ribas, C. (2015), "Shear-flexural strength mechanical model for the design and assessment of reinforced concrete beams", Struct. Infrastr. Eng., 11(11), 1399-1419. https://doi.org/10.1080/15732479.2014.964735.
  26. Rajput, A.S. and Sharma, U.K. (2018), "Corroded reinforced concrete columns under simulated seismic loading", Eng. Struct., 171, 453-463. https://doi.org/10.1016/j.engstruct.2018.05.097.
  27. Recupero, A. and Spinella, N. (2019), "Experimental tests on corroded prestressed concrete beams subjected to transverse load", Struct. Concrete, 20(6), 2220-2229. https://doi.org/10.1002/suco.201900242.
  28. Recupero, A., D'Aveni, A. and Ghersi, A. (2003), "N-M-V interaction domains for box and I-shaped reinforced concrete members", Struct. J., 100(1), 113-119. https://doi.org/10.14359/12445.
  29. Recupero, A., D'Aveni, A. and Ghersi, A. (2005), "Bending moment-shear force interaction domains for prestressed concrete beams", J. Struct. Eng., 131(9), 1413-1421. https://doi.org/10.1061/(ASCE)0733-9445(2005)131:9(1413).
  30. Recupero, A., Spinella, N. and Tondolo, F. (2018), "Failure analysis of corroded RC beams subjected to shear-flexural actions", Eng. Fail. Anal., 93, 26-37. https://doi.org/10.1016/j.engfailanal.2018.06.025.
  31. Rodriguez, J., Ortega, L.M. and Casal, J. (1997), "Load carrying capacity of concrete structures with corroded reinforcement", Constr. Build. Mater., 11(4), 239-248. https://doi.org/10.1016/S0950-0618(97)00043-3.
  32. Rossi, P.P. (2013), "Evaluation of the ultimate strength of R.C. rectangular columns subjected to axial force, bending moment and shear force", Eng. Struct., 57, 339-355. https://doi.org/10.1016/j.engstruct.2013.09.006.
  33. Rossi, P.P. (2021), "Simplified evaluation of the N-M-V ultimate domain of R.C. rectangular members with shear reinforcement", Struct., 34, 4758-4773. https://doi.org/10.1016/j.istruc.2021.10.031.
  34. Rossi, P.P. and Spinella, N. (2022), "Corroded stirrups effects on the shear behavior of reinforced concrete slender beams", 6th Int. Conf. on Civil Eng., ICOCE 2022, Singapore.
  35. Soltani, M., Abu-Abaileh, A. and Rowe, B.S. (2020), "Statistical approach to modeling reduced shear capacity of corrosion-damaged reinforced concrete beams", Pract. Period. Struct. Des. Constr., 26(2), 4020073. https://doi.org/10.1061/(ASCE)SC.1943-5576.0000564.
  36. Tang, S., Liu, J., Chen, H., Zhang, J., Li, W. and Yang, X. (2022), "Analysis on calculation model for shear capacity of rust-stirrup reinforced concrete beams strengthened with fiber reinforced polymer", J. Chin. Soc. Corr. Prot., 42(5), 861-866. https://doi.org/10.11902/1005.4537.2021.274.
  37. Tondolo, F. (2015), "Bond behaviour with reinforcement corrosion", Constr. Build. Mater., 93, 926-932. https://doi.org/10.1016/j.conbuildmat.2015.05.067.
  38. Val, D.V. and Melchers, R.E. (1997), "Reliability of deteriorating RC slab bridges", J. Struct. Eng., 123(12), 1638-1644. https://doi.org/10.1061/(ASCE)0733-9445(1997)123:12(1638).
  39. Vecchio, F.J. and Collins, M.P. (1986), "The modified compression-field theory for reinforced concrete elements subjected to shear", ACI Struct. J., 83(2), 219-231. https://doi.org/10.14359/10416.
  40. Xu, S. and Niu, D. (2004), "The shear behavior of corroded simply supported reinforced concrete beam", J. Build. Struct., 25(5), 98-104. https://doi.org/10.3321/j.issn:1000-6869.2004.05.016
  41. Xu, S., Zhang, Z., Li, R., Qiu, B., Banba, S., Abe, T., Nagaoka, K., Murakami, Y., Qiao, D., Nakamura, H., Yamamoto, Y. and Miura, T. (2017), "Experimental study on the shear behavior of RC beams with corroded stirrups", J. Adv. Concrete Tech., 15(4), 178-189. https://doi.org/10.3151/jact.15.178.
  42. Xue, X., Seki, H. and Chen, Z.W. (2013), "Shear capacity of rc beams containing corroded longitudinal bars", Proc. Thirteenth East Asia-Pacific Conf. Struct. Eng. and Constr. (EASEC-13). The Thirteenth East Asia-Pacific Conference on Struct. Eng. and Construction (EASEC-13), C-6-2.
  43. Xue, X., Seki, H. and Song, Y. (2016), "Shear behavior of RC beams containing corroded stirrups", Adv. Struct. Eng., 17(2), 165-178. https://doi.org/10.1260/1369-4332.17.2.165.
  44. Zhang, X., Wang, L., Zhang, J. and Liu, Y. (2017), "Corrosion-induced flexural behavior degradation of locally ungrouted post-tensioned concrete beams", Constr. Build. Mater., 134, 7-17. https://doi.org/10.1016/j.conbuildmat.2016.12.140.
  45. Zhao, Y. and Jin, W. (2008), "Analysis on shearing capacity of Concrete beams with corroded stirrups", J. Zhejiang Univ. (Eng. Sci.), 42(1), 19. https://doi.org/1008-973X(2008)01-0019-06. 1008-973X(2008)01-0019-06
  46. Zhou, H., Chen, S., Du, Y., Lin, Z., Liang, X., Liu, J. and Xing, F. (2020), "Field test of a reinforced Concrete bridge under marine environmental corrosion", Eng. Fail. Anal., 115, 104669. https://doi.org/10.1016/j.engfailanal.2020.104669.
  47. Zhou, H., Li, Y., Wen, Q. and Deodatis, G. (2022), "Stochastic field model for the residual radius along the length of naturally and artificially corroded rebars", Struct. Infrastr. Eng., 1-12. https://doi.org/10.1080/15732479.2022.2027471.
  48. Zhu, W., Francois, R., Coronelli, D. and Cleland, D. (2013), "Effect of corrosion of reinforcement on the mechanical behaviour of highly corroded RC beams", Eng. Struct., 56, 544-554. https://doi.org/10.1016/j.engstruct.2013.04.017.