• Title/Summary/Keyword: non-linear programming

Search Result 164, Processing Time 0.032 seconds

A Real-time System of Crowd Animation with Motion Pre-processing Method (동작 전처리 기법을 활용한 실시간 군중 애니메이션 시스템)

  • Ahn, Jung-Hyun;Wohn, Kwang-Yun
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.34 no.3
    • /
    • pp.124-131
    • /
    • 2007
  • Research field on crowd animation can be classified into two major categories. One is to offer realism of the crowd motion and the other is to improve speed of the animation. For the last decade, a lot of research on realism and behavior of crowd have been presented. But lately, research on improving speed seems like more interesting. Therefore, in this paper, we conducted an experiment to analyze what is the main bottleneck of crowd animation. As the result, we find out one of the most important bottleneck is the number of joints transformed in each animation frame. In order to resolve this problem we propose a novel level-of-detail technique 'motion level-of-detail', which is a joint-reduction technique operated in the pre-processing time. We used a non-linear optimization, SQP (sequential quadric programming), to generate the low detailed motions.

OPTIMUM STORAGE REALLOCATION AND GATE OPERATION IN MULTIPURPOSE RESERVOIRS

  • Hamid Moradkhani
    • Water Engineering Research
    • /
    • v.3 no.1
    • /
    • pp.57-62
    • /
    • 2002
  • This research is intended to integrate long-term operation rules and real time operation policy for conservation & flood control in a reservoir. The familiar Yield model has been modified and used to provide long-term rule curves. The model employs linear programming technique under given physical conditions, i.e., total capacity, dead storage, spillways, outlet capacity and their respective elevations to find required and desired minimum storage fur different demands. To investigate the system behavior resulting from the above-mentioned operating policy, i.e., the rule curves, the simulation model was used. Results of the simulation model show that the results of the optimization model are indeed valid. After confirmation of the above mentioned rule curves by the simulation models, gate operation procedure was merged with the long term operation rules to determine the optimum reservoir operating policy. In the gate operation procedure, operating policy in downstream flood plain, i.e., determination of damaging and non-damaging discharges in flood plain, peak floods, which could be routed by reservoir, are determined. Also outflow hydrograph and variations of water surface levels for two known hydrographs are determined. To examine efficiency of the above-mentioned models and their ability in determining the optimum operation policy, Esteghlal reservoir in Iran was analyzed as a case study. A numerical model fur the solution of two-dimensional dam break problems using fractional step method is developed on unstructured grid. The model is based on second-order Weighted Averaged Flux(WAF) scheme with HLLC approximate Riemann solver. To control the nonphysical oscillations associated with second-order accuracy, TVD scheme with SUPERBEE limiter is used. The developed model is verified by comparing the computational solutions with analytic solutions in idealized test cases. Very good agreements have been achieved in the verifications.

  • PDF

Relationship among Degree of Time-delay, Input Variables, and Model Predictability in the Development Process of Non-linear Ecological Model in a River Ecosystem (비선형 시계열 하천생태모형 개발과정 중 시간지연단계와 입력변수, 모형 예측성 간 관계평가)

  • Jeong, Kwang-Seuk;Kim, Dong-Kyun;Yoon, Ju-Duk;La, Geung-Hwan;Kim, Hyun-Woo;Joo, Gea-Jae
    • Korean Journal of Ecology and Environment
    • /
    • v.43 no.1
    • /
    • pp.161-167
    • /
    • 2010
  • In this study, we implemented an experimental approach of ecological model development in order to emphasize the importance of input variable selection with respect to time-delayed arrangement between input and output variables. Time-series modeling requires relevant input variable selection for the prediction of a specific output variable (e.g. density of a species). Inadequate variable utility for input often causes increase of model construction time and low efficiency of developed model when applied to real world representation. Therefore, for future prediction, researchers have to decide number of time-delay (e.g. months, weeks or days; t-n) to predict a certain phenomenon at current time t. We prepared a total of 3,900 equation models produced by Time-Series Optimized Genetic Programming (TSOGP) algorithm, for the prediction of monthly averaged density of a potamic phytoplankton species Stephanodiscus hantzschii, considering future prediction from 0- (no future prediction) to 12-months ahead (interval by 1 month; 300 equations per each month-delay). From the investigation of model structure, input variable selectivity was obviously affected by the time-delay arrangement, and the model predictability was related with the type of input variables. From the results, we can conclude that, although Machine Learning (ML) algorithms which have popularly been used in Ecological Informatics (EI) provide high performance in future prediction of ecological entities, the efficiency of models would be lowered unless relevant input variables are selectively used.

Study of Program and Erase Characteristics for the Elliptic GAA SONOS Cell in 3D NAND Flash Memory (3차원 낸드 플레쉬에서 타원형 GAA SONOS 셀의 프로그램과 삭제 특성 연구)

  • Choi, Deuk-Sung;Lee, Seung-Heui;Park, Sung-Kye
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.11
    • /
    • pp.219-225
    • /
    • 2013
  • Program and erase characteristics of the elliptic gate all around (e-GAA) SONOS cell have been studied as the variation of eccentricity of the channel. An analytic program and erase model for the elliptic GAA SONOS cell is proposed and evaluated. The model shows that the ISPP (incremental-step-pulse programming) property is changed non-linearly as the eccentricity of the e-GAA SONOS cell is increased. It is differently from the well known linear relationship for that of 2D SONOS and even 3D circular SONOS cell with program bias. We can find that the simulation results of ISPP characteristics are in accord with the experimental data.

Advanced Time-Cost Trade-Off Model using Mixed Integer Programming (혼합정수 프로그래밍 기법을 이용한 진보된 Time-Cost Trade-Off Model)

  • Kwon, Obin;Lee, Seunghyun;Son, Jaeho
    • Korean Journal of Construction Engineering and Management
    • /
    • v.16 no.6
    • /
    • pp.53-62
    • /
    • 2015
  • Time-Cost Trade-Off (TCTO) model is an important model in the construction project planning and control area. Two types of Existing TCTO model, continuous and discrete TCTO model, have been developed by researchers. However, Using only one type of model has a limitation to represent a realistic crash scenario of activities in the project. Thus, this paper presents a comprehensive TCTO model that combines a continuous and discrete model. Additional advanced features for non-linear relationship, incentive, and liquidated damage are included in the TCTO model. These features make the proposed model more applicable to the construction project. One CPM network with 6 activities is used to explain the proposed model. The model found an optimal schedule for the example to satisfy all the constraints. The results show that new model can represent more flexible crash scenario in TCTO model.

Optimal Location of FACTS Devices Using Adaptive Particle Swarm Optimization Hybrid with Simulated Annealing

  • Ajami, Ali;Aghajani, Gh.;Pourmahmood, M.
    • Journal of Electrical Engineering and Technology
    • /
    • v.5 no.2
    • /
    • pp.179-190
    • /
    • 2010
  • This paper describes a new stochastic heuristic algorithm in engineering problem optimization especially in power system applications. An improved particle swarm optimization (PSO) called adaptive particle swarm optimization (APSO), mixed with simulated annealing (SA), is introduced and referred to as APSO-SA. This algorithm uses a novel PSO algorithm (APSO) to increase the convergence rate and incorporate the ability of SA to avoid being trapped in a local optimum. The APSO-SA algorithm efficiency is verified using some benchmark functions. This paper presents the application of APSO-SA to find the optimal location, type and size of flexible AC transmission system devices. Two types of FACTS devices, the thyristor controlled series capacitor (TCSC) and the static VAR compensator (SVC), are considered. The main objectives of the presented method are increasing the voltage stability index and over load factor, decreasing the cost of investment and total real power losses in the power system. In this regard, two cases are considered: single-type devices (same type of FACTS devices) and multi-type devices (combination of TCSC, SVC). Using the proposed method, the locations, type and sizes of FACTS devices are obtained to reach the optimal objective function. The APSO-SA is used to solve the above non.linear programming optimization problem for better accuracy and fast convergence and its results are compared with results of conventional PSO. The presented method expands the search space, improves performance and accelerates to the speed convergence, in comparison with the conventional PSO algorithm. The optimization results are compared with the standard PSO method. This comparison confirms the efficiency and validity of the proposed method. The proposed approach is examined and tested on IEEE 14 bus systems by MATLAB software. Numerical results demonstrate that the APSO-SA is fast and has a much lower computational cost.

An Evaluation of Multiple-input Dual-output Run-to-Run Control Scheme for Semiconductor Manufacturing

  • Fan, Shu-Kai-S.;Lin, Yen
    • Industrial Engineering and Management Systems
    • /
    • v.4 no.1
    • /
    • pp.54-67
    • /
    • 2005
  • This paper provides an evaluation of an optimization-based, multiple-input double-output (MIDO) run-to-run (R2R) control scheme for general semiconductor manufacturing processes. The controller in this research, termed adaptive dual response optimizing controller (ADROC), can serve as a process optimizer as well as a recipe regulator between consecutive runs of wafer fabrication. In evaluation, it is assumed that the equipment model could be appropriately described by a pair of second-order polynomial functions in terms of a set of controllable variables. Of practical relevance is to consider a drifting effect in the equipment model since in common semiconductor practice the process tends to drift due to machine aging and tool wearing. We select a typical application of R2R control to chemical mechanical planarization (CMP) in semiconductor manufacturing in this evaluation, and there are five different CMP process scenarios demonstrated, including mean shift, variance increase, and IMA disturbances. For the controller, ADROC, an on-line estimation technique is implemented in a self-tuning (ST) control manner for the adaptation purpose. Subsequently, an ad hoc global optimization algorithm based on the dual response approach, arising from the response surface methodology (RSM) literature, is used to seek the optimum recipe within the acceptability region for the execution of next run. The main components of ADROC are described and its control performance is assessed. It reveals from the evaluation that ADROC can provide excellent control actions for the MIDO R2R situations even though the process exhibits complicated, nonlinear interaction effects between control variables, and the drifting disturbances.

A Framework of Resource Provisioning and Customized Energy-Efficiency Optimization in Virtualized Small Cell Networks

  • Sun, Guolin;Clement, Addo Prince;Boateng, Gordon Owusu;Jiang, Wei
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.12
    • /
    • pp.5701-5722
    • /
    • 2018
  • The continuous increase in the cost of energy production and concerns for environmental sustainability are leading research communities, governments and industries to amass efforts to reduce energy consumption and global $CO_2$ footprint. Players in the information and communication industry are keen on reducing the operational expenditures (OpEx) and maintaining the profitability of cellular networks. Meanwhile, network virtualization has been proposed in this regard as the main enabler for 5G mobile cellular networks. In this paper, we propose a generic framework of slice resource provisioning and customized physical resource allocation for energy-efficiency and quality of service optimization. In resource slicing, we consider user demand and population resources provisioning scheme aiming to satisfy quality of service (QoS). In customized physical resource allocation, we formulate this problem with an integer non-linear programming model, which is solved by a heuristic algorithm based on minimum vertex coverage. The proposed algorithm is compared with the existing approaches, without consideration of slice resource constraints via system-level simulations. From the perspective of infrastructure providers, traffic is scheduled over a limited number of active small-cell base stations (sc-BSs) that significantly reduce the system energy consumption and improve the system's spectral efficiency. From the perspective of virtual network operators and mobile users, the proposed approach can guarantee QoS for mobile users and improve user satisfaction.

A Study on the Integrated System Implementation of Close Range Digital Photogrammetry Procedures (근거리 수치사진측량 과정의 단일 통합환경 구축에 관한 연구)

  • Yeu, Bock-Mo;Lee, Suk-Kun;Choi, Song-Wook;Kim, Eui-Myoung
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.7 no.1 s.13
    • /
    • pp.53-63
    • /
    • 1999
  • For the close range digital photogrammetry, multi-step procedures should be embodied in an integrated system. However, it is hard to construct an Integrated system through conventional procedural processing. Using Object Oriented Programming(OOP), photogrammetric processings can be classified with corresponding subjects and it is easy to construct an integrated system lot digital photogrammetry as well as to add the newly developed classes. In this study, the equation of 3-dimensional mathematic model is developed to make an immediate calibration of the CCD camera, the focus distance of which varies according to the distance of the object. Classes for the input and output of images are also generated to carry out the close range digital photogrammetric procedures by OOP. Image matching, coordinate transformation, dirct linear transformation and bundle adjustment are performed by producing classes corresponding to each part of data processing. The bundle adjustment, which adds the principle coordinate and focal length term to the non-photogrammetric CCD camera, is found to increase usability of the CCD camera and the accuracy of object positioning. In conclusion, classes and their hierarchies in the digital photogrammetry are designed to manage multi-step procedures using OOP and close range digital photogrammetric process is implemented using CCD camera in an integrated System.

  • PDF

Mathematical Model for Liner Shipping Alliance Problem (컨테이너 정기선 선사의 전략적 제휴를 위한 수리적 모형 연구)

  • Chung, Ki-ho
    • Management & Information Systems Review
    • /
    • v.33 no.5
    • /
    • pp.85-95
    • /
    • 2014
  • This paper suggested an efficient mathematical model for strategic alliance of liner shipping companies. Even though a few previous research papers proposed the mathematical models for container slot chartering and allocation under liner shipping, those models were nonlinear and very difficult to solve. So their models had limits to apply them to real world problems. On the other hand, the model suggested in this paper is easy to solve and apply to real world problems because it is a integer linear programming model. This paper tried to apply the model to the same example problem as used in existing research paper. Excel add-in program, Premium Solver Platform was used to solve the problem and the optimal allocation and slot chartering for containers were able to be found easily. The result also showed that the total container shipping cost for applying the strategic alliance model was reduced compared to non-strategic alliance model.

  • PDF