• 제목/요약/키워드: non-linear multivariate analysis

검색결과 34건 처리시간 0.02초

Linear prediction and z-transform based CDF-mapping simulation algorithm of multivariate non-Gaussian fluctuating wind pressure

  • Jiang, Lei;Li, Chunxiang;Li, Jinhua
    • Wind and Structures
    • /
    • 제31권6호
    • /
    • pp.549-560
    • /
    • 2020
  • Methods for stochastic simulation of non-Gaussian wind pressure have increasingly addressed the efficiency and accuracy contents to offer an accurate description of the extreme value estimation of the long-span and high-rise structures. This paper presents a linear prediction and z-transform (LPZ) based Cumulative distribution function (CDF) mapping algorithm for the simulation of multivariate non-Gaussian fluctuating wind pressure. The new algorithm generates realizations of non-Gaussian with prescribed marginal probability distribution function (PDF) and prescribed spectral density function (PSD). The inverse linear prediction and z-transform function (ILPZ) is deduced. LPZ is improved and applied to non-Gaussian wind pressure simulation for the first time. The new algorithm is demonstrated to be efficient, flexible, and more accurate in comparison with the FFT-based method and Hermite polynomial model method in two examples for transverse softening and longitudinal hardening non-Gaussian wind pressures.

A Bayesian Analysis in Multivariate Bioassay and Multivariate Calibration

  • Park, Nae-Hyun;Lee, Suk-Hoon
    • Journal of the Korean Statistical Society
    • /
    • 제19권1호
    • /
    • pp.71-79
    • /
    • 1990
  • In the linear model which consider both the multivariate parallel-line bioassay and the multivariate linear calibration, this paper presents a Bayesian procedure which is an extension of Hunter and Lamboy (1981) and has several advantages compared with the non Bayesian techniques. Based on the methods of this article we discuss the effect of multivariate calibration and give a numerical example.

  • PDF

지도학습기법을 이용한 비선형 다변량 공정의 비정상 상태 탐지 (Abnormality Detection to Non-linear Multivariate Process Using Supervised Learning Methods)

  • 손영태;윤덕균
    • 산업공학
    • /
    • 제24권1호
    • /
    • pp.8-14
    • /
    • 2011
  • Principal Component Analysis (PCA) reduces the dimensionality of the process by creating a new set of variables, Principal components (PCs), which attempt to reflect the true underlying process dimension. However, for highly nonlinear processes, this form of monitoring may not be efficient since the process dimensionality can't be represented by a small number of PCs. Examples include the process of semiconductors, pharmaceuticals and chemicals. Nonlinear correlated process variables can be reduced to a set of nonlinear principal components, through the application of Kernel Principal Component Analysis (KPCA). Support Vector Data Description (SVDD) which has roots in a supervised learning theory is a training algorithm based on structural risk minimization. Its control limit does not depend on the distribution, but adapts to the real data. So, in this paper proposes a non-linear process monitoring technique based on supervised learning methods and KPCA. Through simulated examples, it has been shown that the proposed monitoring chart is more effective than $T^2$ chart for nonlinear processes.

Analysis of Multivariate Financial Time Series Using Cointegration : Case Study

  • Choi, M.S.;Park, J.A.;Hwang, S.Y.
    • Journal of the Korean Data and Information Science Society
    • /
    • 제18권1호
    • /
    • pp.73-80
    • /
    • 2007
  • Cointegration(together with VARMA(vector ARMA)) has been proven to be useful for analyzing multivariate non-stationary data in the field of financial time series. It provides a linear combination (which turns out to be stationary series) of non-stationary component series. This linear combination equation is referred to as long term equilibrium between the component series. We consider two sets of Korean bivariate financial time series and then illustrate cointegration analysis. Specifically estimated VAR(vector AR) and VECM(vector error correction model) are obtained and CV(cointegrating vector) is found for each data sets.

  • PDF

The extension of the largest generalized-eigenvalue based distance metric Dij1) in arbitrary feature spaces to classify composite data points

  • Daoud, Mosaab
    • Genomics & Informatics
    • /
    • 제17권4호
    • /
    • pp.39.1-39.20
    • /
    • 2019
  • Analyzing patterns in data points embedded in linear and non-linear feature spaces is considered as one of the common research problems among different research areas, for example: data mining, machine learning, pattern recognition, and multivariate analysis. In this paper, data points are heterogeneous sets of biosequences (composite data points). A composite data point is a set of ordinary data points (e.g., set of feature vectors). We theoretically extend the derivation of the largest generalized eigenvalue-based distance metric Dij1) in any linear and non-linear feature spaces. We prove that Dij1) is a metric under any linear and non-linear feature transformation function. We show the sufficiency and efficiency of using the decision rule $\bar{{\delta}}_{{\Xi}i}$(i.e., mean of Dij1)) in classification of heterogeneous sets of biosequences compared with the decision rules min𝚵iand median𝚵i. We analyze the impact of linear and non-linear transformation functions on classifying/clustering collections of heterogeneous sets of biosequences. The impact of the length of a sequence in a heterogeneous sequence-set generated by simulation on the classification and clustering results in linear and non-linear feature spaces is empirically shown in this paper. We propose a new concept: the limiting dispersion map of the existing clusters in heterogeneous sets of biosequences embedded in linear and nonlinear feature spaces, which is based on the limiting distribution of nucleotide compositions estimated from real data sets. Finally, the empirical conclusions and the scientific evidences are deduced from the experiments to support the theoretical side stated in this paper.

두 진단검사의 비교에 대한 민감도와 특이도의 다변량 메타분석법 (Multivariate Meta-Analysis Methods of Comparing the Sensitivity and Specificity of Two Diagnostic Tests)

  • 남선영;송혜향
    • Communications for Statistical Applications and Methods
    • /
    • 제18권1호
    • /
    • pp.57-69
    • /
    • 2011
  • 질병에 대한 새로운 진단검사 방법이 의학 연구자들에 의해 끊임없이 개발되고 있으며, 기존 진단검사 방법과 새로운 진단검사 방법을 비교하는 연구논문이 계속 출간되어 누적되고 있다. 메타분석법으로 다수 연구논문의 결과를 종합하여 정확성이 높은 진단검사에 대해 객관적인 결론을 내리게 된다. 이와같이 출간된 두 진단검사를 비교하는 각 연구논문은 각각 질병을 가진 개체와 질병을 가지지 않은 개체에 두 검사를 모두 실시하여 한 쌍의 민감도와 특이도를 구하여 비교한다. 이러한 연구논문의 결과를 종합하는 메타분석은 동일 개체에 실시한 두 검사로 인해 한 쌍의 민감도간의 연관성과 한 쌍의 특이도 간의 연관성을 고려한 메타분석법을 본 논문에서 제시한다. 논문예제 자료와 모의시험으로 메타분석 검정통계량의 효율성을 평가한다.

범용적 적용을 위한 콘크리트의 염화물 확산계수 예측에 관한 연구 (A Study on the Prediction of Chloride Diffusion Coefficient in Concrete for mediocre apply)

  • 김동석;유재강;김영진
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계 학술발표회 논문집(II)
    • /
    • pp.189-192
    • /
    • 2006
  • This study was performed to suggest the mediocre prediction equation of chloride diffusion coefficient which is used to estimate the service life of marine concrete, in order to provide the useful data for concrete mix design of marine concrete. As a result, the mediocre prediction equation of chloride diffusion coefficient which set W/B and mineral admixture replacement ratio as parameters was presented by performing the multivariate non linear regression analysis.

  • PDF

Box-Cox 대비변환을 이용한 구성비율자료의 주성분분석 (Principal Component Analysis of Compositional Data using Box-Cox Contrast Transformation)

  • 최병진;김기영
    • 응용통계연구
    • /
    • 제14권1호
    • /
    • pp.137-148
    • /
    • 2001
  • 비율을 나타내는 요소들로 이루어진 구성비율자료는 각 행들의 합이 1이 되는 제약을 가지고 있어 통계적으로 다루기가 쉽지 않다. 더구나 자료의 구조가 선형적인 형태를 보이지 않는 특성을 가지기 때문에 주성분분석과 같은 선형적인 다변량기법들을 구성비율자료에 적용을 할 때 잘못된 해석과 추론이 이루어질 가능성이 있다. 본 논문에서는 구성비율자료의 주성분분석에서 기존의 방법들이 가지는 문제점을 해결하기 위해 Box-Cox 대비변환(Box-Cox contrast transformation)을 이용한 새로운 형태의 분석방법을 제시한다. 그리고 실제자료의 분석과 모의실험을 통해서 Aitchison(1983)이 제시한 방법과 수행능력을 비교하고자 한다.

  • PDF

패턴인지법에 의한 한국산 고대 유리제품의 분류 (Classification of Korean Ancient Glass Pieces by Pattern Recognition Method)

  • 이철;채명준;김승원;강형태;이종두
    • 대한화학회지
    • /
    • 제36권1호
    • /
    • pp.113-124
    • /
    • 1992
  • Chemometrics의 한 분야인 패턴인지(pattern recognition)법을 한국산 고대 유리시료 94종의 중성자방사화분석으로부터 얻은 다변수데이타에 적용하였다. unsupervised learning의 방법인 주성분분석과 비선형도시법으로 시료를 분류한 결과 유리시료는 6개의 군을 형성하였다. 6개의 참조시료셋트와 시험시료셋트에 supervised learning의 SIMCA법을 적용시켰다. 그 결과 참조시료셋트는 주성분분석법 및 비선형도시법의 결과와 일치하였고 시험시료셋트에서 33개의 시료 중 17개 시료에 대해 시료가 속한 군을 판정할 수 있었다.

  • PDF