< Research Paper> Journal of the Korean

Statistical Society
Vol. 19, No. 1, 1990

A Bayesian Analysis in Multivariate Bioassay
and Multivariate Calibration™
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ABSTRACT

In the linear model which consider both the multivariate parallel-line bioassay
and the multivariate linear calibration, this paper presents a Bayesian procedure
which is an extension of Hunter and Lamboy(1981) and has several advantages
compared with the non Bayesian techniques. Based on the methods of this article
we discuss the effect of multivariate calibration and give a numerical example.

1. Introduction

Let us consider the following linear model;

Yi=a+Bixyt+BZytey, i=1, 2; j=1, 2,--n,, (1.1)

where Y,; are observable p-dimensional random vectors,p X 1vectors a, 81, £ are unknown
parameters, the error terms &;’s are i.i.d. Ny(0, £)(2 is unknown) random vectors and Z,;’s

are defined as follows;
Zu: { 0, if i=1
1, if  i=2,

Without loss of generality the controlled variables x;’s are chosen so that
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nl .
they have the property 3 x,;=0, i=1,2.
j=1

Model (1.1) is known as a multivariate bioassay model. The fundamental condition of
similarity between test preparation(i=1 case) and standard preparation(i=2 case), a
prerequisite of all dilution assays, requires 8,;=8u. Under this condition the scalar u is
viewed as the potency of the test relative to the standard and (1.1) will be a parallel-line
bioassy model. On test about g,=gux which we assume throughout this paper, refer to
Srivastava(1986). We are concerned with inferences for u. There are numerous non-Bay-
esian statistical studies concerning inferences on u(see Srivastava(1986) and references
therein). Very little Bayesian work is available for this problem. An exception is Buona-
ccorsi and Gatsonis(1988), who considered the p=1 case.

Moreover (1.1) is a multivariate linear calibration model if we take the key relation g8,=

By and
Xi;= { Xij i=1
0 ’ l:2

Also in the calibration problem most work has concentrated on the estimation, including
interval estimation, of x. Brown(1982) gave Bayesian and non-Bayesian analysis for this
problem. His Bayesian solutions obtained by assigning prior directly to the unknown g are
multivariate extensions of those of Hoadley(1970).

In this paper we present a Bayesian inference on g and our approach will be based on
ideas of Hunter and Lamboy(1981). In the multivariate bioassay setting our work is the
first Bayesian treatment and in view of the multivariate calibration our work is different
from that of Brown(1982) and possesses several advantages over that of Brown, among
which is an ability to algebraically analyze the effect of multivariate calibration. The
basic idea is that for any constant px1 vector ¢, ¢’& =c B holds so that x can be
expressed as the ratio of two linear combinations of regression coefficients, leading to the
problem of finding the best choice of ¢ in some sense.

In section 2 we derive the posterior density of x=(c’8)/(c’8) by adopting an usual
noninformative prior and choose ¢ to minimize the posterior variance of u. Also we study
the effect of multivariate calibration by using the results of this section. Section 3 contains
an example. In Section 4 we compare our approach with others and discuss some impor-

tant issues.
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2. Main Results

2-1. The Posterior Distribution of 4

In this subsection we derive the posterior density of x# and study the best choice of c.

Model(1.1) can be rewritten as follows;
Y=XB+E (2.1)

where Y =(y11, Viz,'*, Vings Va1, Yo2," *s¥2ny),
B =(a, 6, &),
E'=(&n, €12, €10, €21, €22, £2n,), and
X' = 1 1..- 1 1--- 1
Xi1 XizXin, Xa1ttXas,
0 0 0 1--- 1

If we use an invariant Jeffreys’ prior
P(B | data)ec | 3 | ~tP+022
then familiar results(Box and Tiao(1973)) imply that the posterior distribution of B is
P(B | data)ec | I,+V!(B—ByX'X(B—-B) | -2 2.2)

where B=(a, £, By =X'X)"' XY, V=(Y —XBy(Y —XB) and
n=n, +n,. Implicitly defining A by

X'X=/n 0 n, ,
0 A 0 where A:E Xif

=]

[]
—

n, 0 n; ’

the posterior distribution of 8, 8 is given by

P4, B, | data)ec
| L+V-Y 8 —5i, B:—B)Cs (B — B, B—RY |~ (2.3)



74 Nae Hyun Park and Suk Hoon Lee

sz - ( A-l 0 )
0 n/(mn,)/,

From (2.3) we can obtain for any constant pXx1 vector ¢,

where

P(c'By, ¢'B; | data)ec

o) _C’ﬁl ' o) _Clﬁl ~(n—p)i2
14+(c’'Vo)! , . Coi! , A 2.4)
B—c'B cB—C' B,
which is a bivariate t distribution with degrees of freedom v=n-p-2.(See Box and
Tiao(1973).) From (2.4) we can obtain the generalized MLE of x, namely, 2= B/ B).

By the formula (2.6) in the Hunter and Lamboy (1981) and their corrigendum{1984), our

final posterior density of g is the following;
i) for even v=n-p-2 and q=(v+2)/2,
P(u | data)=

k, + k.ks 2?2k k)"2q—1(2q—3) .- 2q—2m—1)
(g—Dk.k,@V (29— Dk.kE D w0 @-1(q=2) - (q—m—1)A®+D

29(2q— 3! k; Kok, @2

+ (q=DT A= tan~'(ks/v/'A') (2.5a)

ii) for odd v and q=(v+1)/2

2k 2k, ki
P(x | data)= 2q—1) k;kﬁq‘”” + (2q_1)Ai(zi{4(q—1/z) X

al (8k2k4)m(q— 1)((]_2) - (q—m)
{1+ 2 5e2q 5~ (Fa—2m—T1a" | (2.5b)

where k,={T((v+2)/2) | Q| *}/{=T(v/2)}

(5 %)
Q'=(c'Vo)!
0 R

k;=(c'Ve)y HRu*+A)
ks =-2(c'Ve)! (Ruc’ B +AcB)
k=14 VO {RICBP+ACB))
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A=4k,k,—k$
(2q-3)1'=(2q-3)2q—5) -1
R:n]_nz/n.

When p=1, ¢ will be a constant scalar and our approach will be reduced to the work of
Hunter and Lamboy(1981).

2-2. Choice of ¢

For any constant p X1 vector ¢, g =(c¢’'8)/(c’ ) holds so that the choice of suitable c is
important. It is natural to choose ¢ to minimize Var((c’'8)/(c’'8,) | data) but the non-
existence of the conditional variance in this setting is the trouble. However, as Schuk-
1a(1972) mentioned, this trouble can be avoided by assuming ¢’ 8, %0, so our development
of this subsection is under the condition that the p-value is almost zero when testing ¢’ =
0.

By forming a Taylor series expansion of (¢'3)/(¢'$) about (¢'f,, ¢ &) and dropping all
terms of order higher than 2, we obtain

o ~ (v=2'c/Ve(d B) { A-t }
A (CF- % )2R CHN;
_ c'Sc N
G ((v 2R + 7 o— 2 A™) (2.6)

where S=V/(n—3).

Recalling the relation 8,= B4 it seems reasonable to assume that ,Q does not vary much as
¢ varies. On the other hand in the calibration case Var(u | data) is approximated by
ng! (¢’Sc)(c’ B2 for sufficiently large n,(large calibration experiment case), assuming A™*
— 0 as n; — oo. Therefore in our view we can roughly minimize Var(x | data) by mini-
mizing (¢’Sc)(c’B,) 2 Applying the extended Cauchy-Schwarz inequality, (¢Sc)(c’ B2 has
minimum (B, ’S~'/,)"! when ¢’=g; ’S~! which is our choice of c.

We choose the ¢ under some restricted circumstances but we can apply our method to the
unrestricted cases with this chosen c. Replacing ¢’ by B, 'S~ in the generalized MLE u=

(cB)/ (¢’ By) and (2.5), we can do point and interval estimation for u.
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2-3. Effect of Multivariate Calibration

In this subsection we will study how much we can improve the interval estimate of 4 when
we use the multivariate calibration compared with the univariate calibration. Park(1986)
studied on this topic but he assumed all the nuisance parameters are known. When nuisance
parameters are unknown it appears difficult to study this problem algebraically by non

-Bayesian methods.

Take ¢’=4, 'S™*. By (2.6)

- ~ n—3 ~ n—3 _
Varm(ﬂ I data)z(ﬂx ’S_lﬁl)—l {(n__p_4)R -+ ﬂmz n_p_4 A l} (27)
where =8 'S'8)! B ’S“ﬁz.
When p=1 (univariate calibration case),
Vary(u | data)=Var,( P | data) =~ (B, fs ) { n—3 + p? n—3 A—‘} 2.8)
¢ Bu mh—5R T4 h75 '

where uy=p5:/ B, B and B, are the first coordinates of 8, and g, respectively, and s? is
an unbiased estimator of o2, variance of the first coordinate of &;. By arguments similar

to those of subsection 2.2, we can approximate s x;u. Let us restrict our problem to p=

2 for the multivariate case and let

S= (512 r5152> p= <ﬁu>
r5182 Szz ? ﬂlZ

where r is the sample correlation coefficient of y, and y,. Then for sufficiently large n,

Var, (¢ | data) ~ B" S_lﬁl _ 2yl 512'312 2 9
Varm(u [ data) = Bis? =1+ (1-r?) (r Sszn) . 2.9

This result suggests that there is no need to add one more response variable (y,) if r is
close to (s:8.2)/ (S2:8.1) or 1,though the effect of adding one more variable is great if r is near

zero and far from (s,5.2)/(s25..). See Park(1986) for a related discussion and example.
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3. Example

In this section we use our approach to the data considered by Finney(1978, p.262 Table
13.2.1). For these data, we have n=24, p=2,

7.2167 48.3333
B= 2.1875 - 2.1875
-2.2167 3.7500

106.854 81.471>
V=1 s 223021

¢= [0.8757  -0.5847]

Since v=20, we use the posterior p.d.f (2.5a) and calculate the values ¢ and u satisfying
Jy P(u | data) dg =0.95 numerically as ¢ =-1.48696 and u=-0.41196.

Srivastava(1986) has obtained both exact and asymptotic confidence interval for u
through the multivariate versions of Fieller’s theorem, and Finney(1978) has also done.

Here is the list of the confidence intervals for comparison.

lowerbound upperbound length
Srivastava exact -1.537508 -0.528973 1.008535
(Fieller's theorem) asymptotic -1.765346 -0.409624 1.355721
Finney -1.653 -0.414 1.239
Park/Lee -1.48696 -0.41196 1.07500

4. Discussion

Our approach has several advantages over that of Brown(1982). First we can investigate

and interpret the effect of multivariate calibration as we have discussed in section 2.
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Of course, with the noninformative prior on ¢ we can show that the posterior density of
4, when we apply the Brown’s approach, goes to N(u*, (n,8} >-16,)7%) as n; — oo, where
ur=B1 278 /L S-13,. This result enables us to investigate the multivariate calibra-
tion effect when n, is sufficiently large. However our method enables us to do this job
without regard to the sample size.

Secondly under the noninformative prior we can obtain a proper posterior and express the
density of x4 explicitly while Brown(1982) cannot, except under the very special Student
t prior density.

Finally in contrast with Brown(1982) our Bayesian approach deals with the multivariate
bioassay and the multivariate calibration simultaneously.

Brown and Sundberg(1987) pointed out it might be more effective to use independent
variables one at a time excluding the others than to use all the variables concerned with the
linear model, even when more than one independent variables are to be predicted. We can
demonstrate this phenomenon with two independent variables when n, is large and this is
one of the reasons we consider only one independent variable in our multivariate calibration
model.

As compared to non-Bayesian multivariate bioassay analysis(multivariate version of
Fieller’s theorem) our Bayesian approach enables the investigator to obtain a finite confi-

dence interval and give an exact confidence level on the interval for any data set.
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