• Title/Summary/Keyword: non-linear calibration

Search Result 88, Processing Time 0.032 seconds

An Implementation of Efficient Error-reducing Method Using DSP for LED I-V Source and Measurement System (DSP를 이용한 LED I-V 공급 및 측정 시스템에서의 효율적인 오차 감소 기법 구현)

  • Park, Chang Hee;Cho, Sung Ho
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.109-117
    • /
    • 2015
  • In this paper, we proposed error-reducing method to source or measure a current or voltage for LED in the I-V characteristic analysis system using a digital signal processor (DSP). this method has the advantage of reducing a non-linear circuit error and random error. random error can be reduced using recursive averaging technique and non-linear circuit error can be reduced using 2rd polynomial regression calibration parameters fitting with measured sample data. it corrects measured error of IR, VR, VF1, VF2, VF3 of LED using calibration parameters. experimental results show that can be performed with about 0.017~0.043% accuracy.

A New Liquid Crystal Color Calibration Technique Using Neural Networks and Median Filtering

  • Lee, Dae-Hee;Chung, Jae-Hun;Won, Se-Youl;Kim, Yun-Taek;Boo, Kwang-Suk
    • Journal of Mechanical Science and Technology
    • /
    • v.14 no.1
    • /
    • pp.113-120
    • /
    • 2000
  • This study has developed a new liquid crystal calibration technique using Neural networks with median filtering and applied this technique to heat transfer measurements. To verify the validity of this new measurement technique, the local Nusselt numbers on a flat plate surface subjected to an axisymmetric impinging jet were measured and compared with the results by the conventional Hue-temperature calibration technique under the same conditions. Because the Neural networks predict the non-linear relations between temperatures and corresponding R, G, B values, Neural networks-median filtering calibration technique can utilize a much wider color band in the experiment than the Hue-temperature calibration technique, resulting in a significant reduction in the experimental time.

  • PDF

Extrinsic calibration using a multi-view camera (멀티뷰 카메라를 사용한 외부 카메라 보정)

  • 김기영;김세환;박종일;우운택
    • Proceedings of the IEEK Conference
    • /
    • 2003.11a
    • /
    • pp.187-190
    • /
    • 2003
  • In this paper, we propose an extrinsic calibration method for a multi-view camera to get an optimal pose in 3D space. Conventional calibration algorithms do not guarantee the calibration accuracy at a mid/long distance because pixel errors increase as the distance between camera and pattern goes far. To compensate for the calibration errors, firstly, we apply the Tsai's algorithm to each lens so that we obtain initial extrinsic parameters Then, we estimate extrinsic parameters by using distance vectors obtained from structural cues of a multi-view camera. After we get the estimated extrinsic parameters of each lens, we carry out a non-linear optimization using the relationship between camera coordinate and world coordinate iteratively. The optimal camera parameters can be used in generating 3D panoramic virtual environment and supporting AR applications.

  • PDF

Parameter Estimation for Nash Model and Diskin Model by Optimization Techniques (최적화 기법을 이용한 Nash 모형과 Diskin 모형의 매개변수 추정)

  • Choi, Min-Ha;Ahn, Jae-Hyun;Kim, Joong-Hoon;Yoon, Yong-Nam
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.1 no.3 s.3
    • /
    • pp.73-82
    • /
    • 2001
  • This study examines the applicability of the Nash model and the Diskin model, which are linear and nonlinear runoff models, respectively, by applying optimization techniques to the parameter calibration of the two models. Nonlinear programming which is one of traditional optimization techniques and Genetic Algorithm which has been actively applied recently are used in this study. The Nash and Diskin models which use the calibrated parameter with a flood events are applied to a different flood event in Soyang Dam basin. The results obtained from the parameter calibration show slight discrepancy depending upon the flood events. It has been found in the comparion between the observed hydrograph and the hydrographs obtained from the parameter calibration that the Diskin model can better simulate the observed hydrograph than the Nash model can, especially, for the peak flow. This can be analyzed that the Diskin model which is a nonlinear runoff model is better off in simulating the nonlinear characteristic of the rainfall-runoff process.

  • PDF

Dynamic Calibration Coefficients Estimation with Linear Interpolation for Uncooled TEC-less IRFPA (비냉각형 TEC-less 열상 시스템에 적합한 선형보간 기반 동적 보정 계수 추정 기법)

  • Han, Sang-Hyuck;Kwak, Dong-Min
    • Aerospace Engineering and Technology
    • /
    • v.11 no.1
    • /
    • pp.98-102
    • /
    • 2012
  • These days, Uncooled IR Systems are more popular in the area of defense and aerospace than before. Uncooled IR Systems are widely used as core technology for making unmanned systems and detecting enemy objects during the day and night in the distance. Recently, researches on TEC-less IRFPA have been increased to minimize the power consumption and to make a smaller system than before. For this, it needs to find adequate NUC(Non-Uniformity Correction) coefficients as FPA(Focal Plane Array) temperature changes. In this paper, we propose a new NUC coefficient estimating technique, DCCE-LI(Dynamic Calibration Coefficients Estimation with Linear Interpolation), for TEC-less IRFPA. It is based on a linear interpolation method and it can estimate NUC coefficients in real-time. So, by testing and evaluating it with some IR images, we conclude that the quality of IR images using proposed method is better than applying static coefficients.

On-line Calibration algorithm for Asynchronous CDMA-based antenna arrays (비동기 CDMA 시스템 기반의 배열 안테나용 온라인 보정 알고리즘)

  • Lee Chong-Hyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.29 no.1A
    • /
    • pp.18-30
    • /
    • 2004
  • In this paper, the calibration problem of an asynchronous CDMA-based antenna array is studied. A new iterative calibration algorithm for antenna array in the presence of frequency offset error is presented. The algorithm is applicable to a non-linear array and does not require a prior knowledge of the (direction of arrivals) DOAs of the signals of any user, and it only requires the code sequence of a reference user. The algorithm is based on the two step procedures, one for estimating both channel and frequency offset and the other for estimating the unknown array gain and phase. Consequently, estimates of the DOAs, the multi-path impulse response of the reference signal sources, and the carrier frequency offset as well as the calibration of antenna array are provided. The performance of the proposed algorithm is investigated by means of computer simulations and is verified by using field data measured through a custom-built W-CDMA test-bed.

A Methodology for Fatigue Reliability Assessment Considering Stress Range Distribution Truncation

  • Park, Jun Yong;Park, Yeun Chul;Kim, Ho-Kyung
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1242-1251
    • /
    • 2018
  • Not all loads contribute to fatigue crack propagation in the welded detail of steel bridges when they are subjected to variable amplitude loading. For fatigue assessment, therefore, non-contributing stress cycles should be truncated. However, stress range truncation is not considered during typical fatigue reliability assessment. When applying the first order reliability method, stress range truncation occurs mismatch between the expected number of cycles to failure and the number of cycles obtained at the time of evaluation, because the expected number of cycles only counts the stress cycles that contribute to fatigue crack growth. Herein, we introduce a calibration factor to coordinate the expected number of cycles to failure to the equivalent value which includes both contributing and non-contributing stress cycles. The effectiveness of stress range truncation and the proposed calibration factor was validated via case studies.

Development of Calibration Model for Firmness Evaluation of Apple Fruit using Near-infrared Reflectance Spectroscopy (사과 경도의 비파괴측정을 위한 검량식 개발 및 정확도 향상을 위한 연구)

  • 손미령;조래광
    • Food Science and Preservation
    • /
    • v.6 no.1
    • /
    • pp.29-36
    • /
    • 1999
  • Using Fuji apple fruits cultivated in Kyungpook prefecture, the calibration model for firmness evaluation of fruits by near infrared(NIR) reflectance spectroscopy was developed, and the various influence factors such as instrument variety, measuring method, sample group, apple peel and selection of firmness point were investigated. Spectra of sample were recorded in wavelength range of 1100∼2500nm using NIR spectrometer (InfraAlyzer 500), and data were analyzed by stepwise multiple linear regression of IDAS program. The accuracy of calibration model was the highest when using sample group with wide range, and the firmness mean values obtained in graph by texture analyser(TA) were used as standard data. Chemometrics models were developed using a calibration set of 324 samples and an independent validation set of 216 samples to evaluate the predictive ability of the models. The correlation coefficients and standard error of prediction were 0.84 and 0.094kg, respectively. Using developed calibration model, it was possible to monitor the firmness change of fruits during storage frequently. Time, which was reached to firmness high value in graph by TA, is possible to use as new parameter for freshness of fruit surface during storage.

  • PDF

CALIBRATION OF VECTOR MAGNETOGRAMS BY SOLAR FLARE TELESCOPE OF BOAO

  • MOON YONG-JAE;PARK YOUNG DEUK;YUN HONG SIK
    • Journal of The Korean Astronomical Society
    • /
    • v.32 no.1
    • /
    • pp.65-73
    • /
    • 1999
  • In this study we present a new improved nonlinear calibration method for vector magnetograms made by the Solar Flare Telescope of BOAO. To identify Fe I 6302.5 line, we have scanned monochromatic images of the line integrated over filter passband, changing the location of the central transmission wavelength of a Lyot filter. Then we obtained a filter-convolved line profile, which is in good agreement with spectral atlas data provided by the Sacramento Peak Solar Observatory. The line profile has been used to derive calibration coefficients of longitudinal and transverse fields, employing the conventional line slope method under the weak field approximation. Our improved nonlinear calibration method has also been used to calculate theoretical Stokes polarization signals with various angles of inclination of magnetic fields. For its numerical test, we have compared input magnetic fields with the calibrated ones, which have been derived from the new improved non-linear method and the conventional method respectively. The numerical test shows that the calibrated fields obtained from the improved method are consistent with the input fields, but not with those from the conventional method. Finally, we applied our new improved method to a dipole model which characterizes a typical field configuration of a single, round sunspot. It is noted that the conventional method remarkably underestimates the transverse field component near the inner penumbra.

  • PDF

Fundamental Investigation of Non-invasive Determination of Alcohol in Blood by Near Infrared Spectrophotometry (근적외선 분광분석법을 이용한 음주측정기술 개발에 관한 연구)

  • Chang, Soo-Hyun;Cho, Chang-Hee;Woo, Young-Ah;Kim, Hyo-Jin;Kim, Young-Man;Lee, Kang-Boong;Kim, Young-Woon;Park, Sung-Woo
    • Analytical Science and Technology
    • /
    • v.12 no.5
    • /
    • pp.375-381
    • /
    • 1999
  • Near infrared spectrophotometry(NIR) was developed as a non-invasive determination of blood alcohol. The first pure alcohol/water samples were prepared with ethanol concentration from 0.01 to 0.1%(w/w). Analysis of the second-derivative data was accomplished with multilinear regression(MLR). The standard error of calibration(SEC) of ethanol in ethanol/water solutions was approximately 0.0039%. The calibration models were established from the blood alcohol spectra by MLR and PLSR analysis. The best calibration was built with the second-derivative spectra of 2266 and 2326 nm by MLR. Second-derivative spectra in the spectral ranges of 1100~1340, 1500~1796 and 2064~2300 nm with four PLSR factors provided the standard error of prediction(SEP) of 0.030%(w/w). These results indicate that NIR may be applied for a fast non-invasive determination of alcohol in the blood.

  • PDF