• Title/Summary/Keyword: non-evaporable water content

Search Result 4, Processing Time 0.018 seconds

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 2) Alkali-activated slag (수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 2) 알칼리 활성 슬래그)

  • Lee, Hyo Kyong;Song, Keum-Il;Song, Jinkyu;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.106-117
    • /
    • 2018
  • The present study was carried out to find a suitable drying method for the determination of non-evaporable water in hydraulic inorganic materials. In Part 1 of the paper, the case ordinary Portland cement was discussed and, in this Part 2, the case of alkali active slag (AAS) was investigated. Various drying methods including vacuum and oven drying, and an ignition, were used for the AAS system having different w/b, types and amounts of alkali activators. It was found that a combination of the vacuum and oven drying was a suitable drying method for the AAS case. Although a part of the crystallized water in hydration products was decomposed, but the free and adsorbed water could be completely evaporated and the deviation of the results was small.

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 1) Ordinary Portland cement paste and mortar (수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 1) 보통 포틀랜드 시멘트 페이스트 및 모르타르)

  • Lee, Hyo Kyoung;Kim, Hyeong-Ki
    • Resources Recycling
    • /
    • v.27 no.1
    • /
    • pp.92-105
    • /
    • 2018
  • The present study was carried out to find a suitable drying method for measuring non-evaporable water contents of various hydraulic inorganic materials. In Part 1 of the paper, the case Ordinary Portland cement is discussed. Various drying methods including vacuum and oven drying, and an ignition, were used for the OPC paste and mortar having different w/c. The sole vacuum drying under room temperature led a fluctuation on measurement of hydration degree, while the sole oven drying also yielded unwanted hydration promotion at the early age. A combination of the vacuum and oven drying was considered as a suitable drying method for the OPC case.

The Degree of Hydration and Mechanical Properties of High Volume Fly Ash Cement (하이볼륨 플라이애시 시멘트의 수화도 및 역학적 특성)

  • Cha, Soo-Won;Choi, Young-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.26 no.5
    • /
    • pp.95-102
    • /
    • 2022
  • Recently, there has been a growing interest in reducing greenhouse gases in all industrial fields. In the construction industry, studies have been conducted for the use of high-volume fly ash concrete to replace cement with fly ash. Quantitative measurements of cement hydration and fly ash reactivity enable a clear understanding of the strength development mechanism of high-volume fly ash concrete. It is very difficult to describe the reactivity in a simple way because the hydration and pozzolanic reactions of cement paste containing fly ash are very complex and the composition of the hydration product cannot be accurately determined. This study investigated the hydration and mechanical properties of high volume fly ash (HVFA) cement according to the substitution rate of fly ash (FA). The hydration degree of cement and the reactivity of FA were evaluated through the selective dissolution method and the non-evaporable water content of the paste according to age. In addition, compressive strength was measured using HVFA mortar specimens according to age. As a result of the experiment, as the substitution rate of fly ash increased, the hydration degree of cement increased, but the reactivity of FA decreased.

Effect of Impurities Included in the Domestic Waste Phosphogypsum on Hydration of Portland Cement (국산 인산석고에 함유된 불순물들이 Portland Cement의 수경성에 미치는 영향)

  • 인식환;정형진
    • Journal of the Korean Ceramic Society
    • /
    • v.18 no.4
    • /
    • pp.237-246
    • /
    • 1981
  • The effects of impurities, included in the by-produced phosphogypsum from the dihydrate process, on the hydration of portland cement were studied. Six gypsums were adopted in this study; four different raw phosphogypsums from domestic fertilizer plants, a reprocessed phosphogypsum and a reagent grade pure gypsum. Cements with differing $SO_3$ content, were synthesized by grinding two different commercial clinkers and the above six gypsums together. The effects of the impurities were investigated by measuring the setting time, the non-evaporable water coatent, X-ray phase analysis of cement pastes and the compressive strength of cement mortar specimens. It was found that the soluble $P_2O_5$ known as one of injurious impurities on the hydration of portland cement, included in the demestic raw phosghoypsum cxneedigply by far the specified amounts of the Korean Industrial Standards (L9005), and retarded the setting time severely, thus the strength development of cement was delayed at the earlier stage of hydration.

  • PDF