DOI QR코드

DOI QR Code

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 2) Alkali-activated slag

수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 2) 알칼리 활성 슬래그

  • 이효경 (조선대학교 건축학부 (건축공학전공)) ;
  • 송금일 (전남대학교 건축학부 (건축공학전공)) ;
  • 송진규 (전남대학교 건축학부 (건축공학전공)) ;
  • 김형기 (조선대학교 건축학부 (건축공학전공))
  • Received : 2018.01.12
  • Accepted : 2018.02.14
  • Published : 2018.02.28

Abstract

The present study was carried out to find a suitable drying method for the determination of non-evaporable water in hydraulic inorganic materials. In Part 1 of the paper, the case ordinary Portland cement was discussed and, in this Part 2, the case of alkali active slag (AAS) was investigated. Various drying methods including vacuum and oven drying, and an ignition, were used for the AAS system having different w/b, types and amounts of alkali activators. It was found that a combination of the vacuum and oven drying was a suitable drying method for the AAS case. Although a part of the crystallized water in hydration products was decomposed, but the free and adsorbed water could be completely evaporated and the deviation of the results was small.

본 연구는 수경성 무기재료를 사용한 배합의 고정수량 측정을 위해 적절히 사용할 수 있는 건조방법을 찾기 위해 수행되었으며, 제1보에서는 보통 포틀랜드 시멘트, 그리고 본 제 2보에서는 알칼리 활성 슬래그의 경우에 대해 다루었다. 다양한 w/b, 알칼리 활성화제 종류 및 양을 갖는 알칼리 활성 슬래그에 대해 진공건조 및 오븐건조, 이 둘의 조합 그리고 작열법이 사용되었다. 실험결과, 진공건조 후 오븐건조를 사용한 경우 비록 수화물의 결정수 일부가 분해되지만 자유수분의 완전한 증발이 가능하여 그 결과값의 편차가 작았으며, 따라서 AAS의 수화도를 정량평가하기 위한 단순하고 쉬운 고정수량 측정방법으로 적합하다고 판단하였다.

Keywords

References

  1. Lee, H. G., and Kim, H. K., 2018: Influence of drying methods on measurement of hydration degree of hydraulic inorganic materials: 1) Ordinary Portland cement-based paste and mortar, Journal of the Korean Institute of Resources Recycling, 27(1), pp.92-105. https://doi.org/10.7844/KIRR.2018.27.1.92
  2. Song, S., Sohn, D., Jennings, H. M., and Mason, T. O., 2000 : Hydration of alkali-activated ground granulated blast furnace slag. Journal of Materials Science, 35(1), pp.249-257. https://doi.org/10.1023/A:1004742027117
  3. Kim, D., Lai, H. T., Chilingar, G. V., and Yen, T. F. 2006 : Geopolymer formation and its unique properties. Environmental geology, 51(1), pp.103-111. https://doi.org/10.1007/s00254-006-0308-z
  4. Li, C., Sun, H., and Li, L., 2010 : A review: The comparison between alkali-activated slag (Si+Ca) and metakaolin (Si+Al) cements. Cement and Concrete Research, 40(9), pp.1341-1349. https://doi.org/10.1016/j.cemconres.2010.03.020
  5. Bullard, J. W., Jennings, H. M., Livingston, R. A., Nonat, A., Scherer, G. W., Schweitzer, J. S., and Thomas, J. J., 2011 : Mechanisms of cement hydration, Cement and Concrete Research, 41(12), pp.1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
  6. Schwarz, N., and Neithalath, N., 2008 : Influence of a fine glass powder on cement hydration: Comparison to fly ash and modeling the degree of hydration. Cement and Concrete Research, 38(4), pp.429-436. https://doi.org/10.1016/j.cemconres.2007.12.001
  7. Lam, L., Wong, Y. L., and Poon, C. S., 2000 : Degree of hydration and gel/space ratio of high-volume fly ash/cement systems, Cement and Concrete Research, 30(5), pp.747-756. https://doi.org/10.1016/S0008-8846(00)00213-1
  8. Haha, M. B., Lothenbach, B., Le Saout, G. L., and Winnefeld, F., 2011 : Influence of slag chemistry on the hydration of alkali-activated blast-furnace slag-Part I: Effect of MgO. Cement and Concrete Research, 41(9), pp.955-963. https://doi.org/10.1016/j.cemconres.2011.05.002
  9. Haha, M. B., Le Saout, G., Winnefeld, F., and Lothenbach, B., 2011 : Influence of activator type on hydration kinetics, hydrate assemblage and microstructural development of alkali activated blast-furnace slags. Cement and Concrete Research, 41(3), pp.301-310. https://doi.org/10.1016/j.cemconres.2010.11.016
  10. North, M. R., and Swaddle, T. W., 2000 : Kinetics of silicate exchange in alkaline aluminosilicate solutions. Inorganic chemistry, 39(12), pp.2661-2665. https://doi.org/10.1021/ic0000707
  11. Bakharev, T., Sanjayan, J. G., and Cheng, Y. B., 1999 : Effect of elevated temperature curing on properties of alkali-activated slag concrete. Cement and concrete research, 29(10), pp.1619-1625. https://doi.org/10.1016/S0008-8846(99)00143-X
  12. Korpa, A., and Trettin, R., 2006 : The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods. Cement and Concrete Research, 36(4), pp.634-649. https://doi.org/10.1016/j.cemconres.2005.11.021
  13. Coussy, O., Dangla, P., Lassabatere, T., and Baroghel-Bouny, V., 2004 : The equivalent pore pressure and the swelling and shrinkage of cement-based materials. Materials and structures, 37(1), pp.15-20. https://doi.org/10.1007/BF02481623
  14. Bakharev, T., 2005 : Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and concrete research, 35(6), pp.1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  15. Luke, K., and Glasser, F. P., 1987 : Selective dissolution of hydrated blast furnace slag cements. Cement and Concrete Research, 17(2), pp.273-282. https://doi.org/10.1016/0008-8846(87)90110-4
  16. Yang, K. H., Song, J. K., Ashour, A. F., and Lee, E. T., 2008 : Properties of cementless mortars activated by sodium silicate. Construction and Building Materials, 22(9), pp.1981-1989. https://doi.org/10.1016/j.conbuildmat.2007.07.003
  17. Yang, K. H., and Song, J. K., 2009 : Workability loss and compressive strength development of cementless mortars activated by combination of sodium silicate and sodium hydroxide. Journal of materials in Civil Engineering, 21(3), pp.119-127. https://doi.org/10.1061/(ASCE)0899-1561(2009)21:3(119)
  18. Yang, K. H., Cho, A. R., Song, J. K., and Nam, S. H., 2012 : Hydration products and strength development of calcium hydroxide-based alkali-activated slag mortars. Construction and Building Materials, 29, pp.410-419. https://doi.org/10.1016/j.conbuildmat.2011.10.063
  19. Myers, R. J., Bernal, S. A., San Nicolas, R., and Provis, J. L., 2013 : Generalized structural description of calcium-sodium aluminosilicate hydrate gels: the cross-linked substituted tobermorite model. Langmuir, 29(17), pp.5294-5306. https://doi.org/10.1021/la4000473
  20. Halle, J. C., and Stern, K. H., 1980 : Vaporization and decomposition of sodium sulfate. Thermodynamics and kinetics. The Journal of Physical Chemistry, 84(13), pp.1699-1704. https://doi.org/10.1021/j100450a007
  21. Lothenbach, B., Winnefeld, F., Alder, C., Wieland, E., and Lunk, P., 2007 : Effect of temperature on the pore solution, microstructure and hydration products of Portland cement pastes. Cement and Concrete Research, 37(4), pp.483-491. https://doi.org/10.1016/j.cemconres.2006.11.016
  22. Guerrieri, M., and Sanjayan, J., 2011 : Investigation of the cause of disintegration of alkali-activated slag at temperature exposure of $50^{\circ}C$. Journal of Materials in Civil Engineering, 23(12), pp.1589-1595. https://doi.org/10.1061/(ASCE)MT.1943-5533.0000313
  23. Garbev, K., Bornefeld, M., Beuchle, G., and Stemmermann, P., 2008 : Cell Dimensions and Composition of Nanocrystalline Calcium Silicate Hydrate Solid Solutions. Part 2: X-Ray and Thermogravimetry Study. Journal of the American Ceramic Society, 91(9), pp.3015-3023. https://doi.org/10.1111/j.1551-2916.2008.02601.x
  24. Yu, P., and Kirkpatrick, R. J., 1999 : Thermal dehydration of tobermorite and jennite. Concrete Science and Engineering, 1, pp.185-191.
  25. Collins, F., and Sanjayan, J. G., 2000 : Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 30(9), pp.1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6
  26. Jensen, O. M., and Hansen, P. F., 2001 : Water-entrained cement-based materials: I. Principles and theoretical background. Cement and concrete research, 31(4), pp.647-654. https://doi.org/10.1016/S0008-8846(01)00463-X
  27. Escalante-Garcia, J. I., Fuentes, A. F., Gorokhovsky, A., Fraire-Luna, P. E., and Mendoza-Suarez, G., 2003 : Hydration products and reactivity of blast?furnace slag activated by various alkalis. Journal of the American Ceramic Society, 86(12), pp.2148-2153. https://doi.org/10.1111/j.1151-2916.2003.tb03623.x
  28. Gao, X., Yu, Q. L., and Brouwers, H. J. H., 2015 : Reaction kinetics, gel character and strength of ambient temperature cured alkali activated slag-fly ash blends. Construction and Building Materials, 80, pp.105-115. https://doi.org/10.1016/j.conbuildmat.2015.01.065

Cited by

  1. 알칼리 활성 슬래그의 수화에 대한 개선된 화학양론적 모델 vol.9, pp.1, 2021, https://doi.org/10.14190/jrcr.2021.9.1.1