DOI QR코드

DOI QR Code

Influence of Drying Methods on Measurement of Hydration Degree of Hydraulic Inorganic Materials: 1) Ordinary Portland cement paste and mortar

수경성 무기재료의 수화도 측정에 대한 건조방법의 영향: 1) 보통 포틀랜드 시멘트 페이스트 및 모르타르

  • 이효경 (조선대학교 건축학부 (건축공학전공)) ;
  • 김형기 (조선대학교 건축학부 (건축공학전공))
  • Received : 2018.01.12
  • Accepted : 2018.02.14
  • Published : 2018.02.28

Abstract

The present study was carried out to find a suitable drying method for measuring non-evaporable water contents of various hydraulic inorganic materials. In Part 1 of the paper, the case Ordinary Portland cement is discussed. Various drying methods including vacuum and oven drying, and an ignition, were used for the OPC paste and mortar having different w/c. The sole vacuum drying under room temperature led a fluctuation on measurement of hydration degree, while the sole oven drying also yielded unwanted hydration promotion at the early age. A combination of the vacuum and oven drying was considered as a suitable drying method for the OPC case.

본 연구는 여러 수경성 무기재료를 사용한 배합의 고정수량 측정을 위해 적절히 사용할 수 있는 건조방법을 찾기 위해 수행되었으며, 본 제1보에서는 보통 포틀랜드 시멘트의 경우에 대해 다루었다. 다양한 w/c를 갖는 시멘트 페이스트 및 모르타르에 대해 진공건조 및 오븐건조, 이 둘의 조합 그리고 작열법이 사용되었다. 실험결과, 상대적으로 상온 진공건조 만으로는 신뢰도가 낮은 수화도 결과를 얻을 수 밖에 없으며, 오븐건조 만을 사용하면 1일 전후의 극초기 재령에 고온에서 수화촉진이 발생해 실제보다 더 큰 수화도 결과값을 얻게 되는 문제가 있음을 확인 하였다. 따라서 진공건조 후 오븐건조를 사용하는 것이 보통 포틀랜드 시멘트를 위해 바람직한 수화도 측정방법일 수 있음을 확인하였다.

Keywords

References

  1. Bullard, J. W., Jennings, H. M., Livingston, R. A., Nonat, A., Scherer, G. W., Schweitzer, J. S., and Thomas, J. J., 2011 : Mechanisms of cement hydration, Cement and Concrete Research, 41(12), pp.1208-1223. https://doi.org/10.1016/j.cemconres.2010.09.011
  2. Gawin, D., Pesavento, F., and Schrefler, B. A., 2007 : Modelling creep and shrinkage of concrete by means of effective stresses. Materials and Structures, 40(6), pp.579-591. https://doi.org/10.1617/s11527-006-9165-1
  3. Lam, L., Wong, Y. L., and Poon, C. S., 2000 : Degree of hydration and gel/space ratio of high-volume fly ash/cement systems, Cement and Concrete Research, 30(5), pp.747-756. https://doi.org/10.1016/S0008-8846(00)00213-1
  4. Lecomte, I., Henrist, C., Liegeois, M., Maseri, F., Rulmont, A., and Cloots, R., 2006 : (Micro)-structural comparison between geopolymers, alkali-activated slag cement and Portland cement. Journal of the European Ceramic Society, 26(16), pp.3789-3797. https://doi.org/10.1016/j.jeurceramsoc.2005.12.021
  5. Palacios, M., and Puertas, F., 2007 : Effect of shrinkage-reducing admixtures on the properties of alkali-activated slag mortars and pastes. Cement and concrete research, 37(5), pp.691-702. https://doi.org/10.1016/j.cemconres.2006.11.021
  6. Fernandez-Jimenez, A., and Puertas, F., 1997 : Alkaliactivated slag cements: kinetic studies. Cement and Concrete Research, 27(3), pp.359-368. https://doi.org/10.1016/S0008-8846(97)00040-9
  7. Thomas, J. J., Biernacki, J. J., Bullard, J. W., Bishnoi, S., Dolado, J. S., Scherer, G. W., and Luttge, A., 2011 : Modeling and simulation of cement hydration kinetics and microstructure development. Cement and Concrete Research, 41(12), pp.1257-1278. https://doi.org/10.1016/j.cemconres.2010.10.004
  8. Tennis, P. D., and Jennings, H. M., 2000 : A model for two types of calcium silicate hydrate in the microstructure of Portland cement pastes. Cement and concrete research, 30(6), pp.855-863. https://doi.org/10.1016/S0008-8846(00)00257-X
  9. Pane, I., and Hansen, W., 2005 : Investigation of blended cement hydration by isothermal calorimetry and thermal analysis. Cement and concrete research, 35(6), pp.1155-1164. https://doi.org/10.1016/j.cemconres.2004.10.027
  10. Krstulovic, R., and Dabic, P., 2000 : A conceptual model of the cement hydration process. Cement and concrete research, 30(5), pp.693-698. https://doi.org/10.1016/S0008-8846(00)00231-3
  11. Mouret, M., Bascoul, A., and Escadeillas, G., 1997 : Study of the degree of hydration of concrete by means of image analysis and chemically bound water. Advanced Cement Based Materials, 6(3-4), pp.109-115. https://doi.org/10.1016/S1065-7355(97)90017-1
  12. Korpa, A., and Trettin, R., 2006 : The influence of different drying methods on cement paste microstructures as reflected by gas adsorption: comparison between freeze-drying (F-drying), D-drying, P-drying and oven-drying methods. Cement and Concrete Research, 36(4), pp.634-649. https://doi.org/10.1016/j.cemconres.2005.11.021
  13. Scrivener, K. L., 2004 : Backscattered electron imaging of cementitious microstructures: understanding and quantification. Cement and Concrete Composites, 26(8), pp.935-945. https://doi.org/10.1016/j.cemconcomp.2004.02.029
  14. Luke, K., and Glasser, F. P., 1987 : Selective dissolution of hydrated blast furnace slag cements. Cement and Concrete Research, 17(2), pp.273-282. https://doi.org/10.1016/0008-8846(87)90110-4
  15. Andersen, M. D., Jakobsen, H. J., and Skibsted, J., 2004 : Characterization of white Portland cement hydration and the CSH structure in the presence of sodium aluminate by 27 Al and 29 Si MAS NMR spectroscopy. Cement and Concrete Research, 34(5), pp.857-868. https://doi.org/10.1016/j.cemconres.2003.10.009
  16. Jennings, H. M., 2008 : Refinements to colloid model of CSH in cement: CM-II. Cement and Concrete Research, 38(3), pp.275-289. https://doi.org/10.1016/j.cemconres.2007.10.006
  17. Lee, S. H., 2003 : Bound water and drying conditions, Cement, 159, pp.56-60. (In Korean)
  18. Zhang, Q., and Ye, G., 2012 : Dehydration kinetics of Portland cement paste at high temperature. Journal of thermal analysis and calorimetry, 110(1), pp.153-158. https://doi.org/10.1007/s10973-012-2303-9
  19. Garcia-Lodeiro, I., Palomo, A., Fernandez-Jimenez, A., and Macphee, D. E., 2011 : Compatibility studies between NASH and CASH gels. Study in the ternary diagram $Na_2O-CaO-Al_2O_3-SiO_2-H_2O$. Cement and Concrete Research, 41(9), pp.923-931. https://doi.org/10.1016/j.cemconres.2011.05.006
  20. Pan, Z., Li, D., Yu, J., and Yang, N., 2003 : Properties and microstructure of the hardened alkali-activated red mud-slag cementitious material. Cement and Concrete Research, 33(9), pp.1437-1441. https://doi.org/10.1016/S0008-8846(03)00093-0
  21. Collins, F., and Sanjayan, J. G., 2000 : Effect of pore size distribution on drying shrinking of alkali-activated slag concrete. Cement and Concrete Research, 30(9), pp.1401-1406. https://doi.org/10.1016/S0008-8846(00)00327-6
  22. McCarter, W. J., and Garvin, S., 1989 : Dependence of electrical impedance of cement-based materials on their moisture condition. Journal of Physics D: Applied Physics, 22(11), 1773. https://doi.org/10.1088/0022-3727/22/11/033
  23. Atkinson, A., and Nickerson, A. K., 1984 : The diffusion of ions through water-saturated cement. Journal of materials science, 19(9), pp.3068-3078. https://doi.org/10.1007/BF01026986
  24. Lenher, S., and Taylor, G. B., 1930 : Anhydrous magnesium. perchlorate as a drying agent. Industrial & Engineering Chemistry Analytical Edition, 2(1), pp.58-58. https://doi.org/10.1021/ac50069a025
  25. Kim, H. K., Ha, K. A., and Lee, H. K., 2016 : Internal-curing efficiency of cold-bonded coal bottom ash aggregate for high-strength mortar. Construction and Building Materials, 126, pp.1-8. https://doi.org/10.1016/j.conbuildmat.2016.08.125
  26. Kim, H. K., 2015 : Utilization of sieved and ground coal bottom ash powders as a coarse binder in high-strength mortar to improve workability. Construction and Building Materials, 91, pp.57-64. https://doi.org/10.1016/j.conbuildmat.2015.05.017
  27. Bakharev, T., 2005 : Geopolymeric materials prepared using Class F fly ash and elevated temperature curing. Cement and concrete research, 35(6), pp.1224-1232. https://doi.org/10.1016/j.cemconres.2004.06.031
  28. Kim, H. K., 2015 : Properties of normal-strength mortar containing coarsely-crushed bottom ash considering standard particle size distribution of fine aggregate. Journal of Korea Concrete Institute, 27(5), pp.531-539. https://doi.org/10.4334/JKCI.2015.27.5.531
  29. Jensen, O. M., and Hansen, P. F., 2001 : Water-entrained cement-based materials: I. Principles and theoretical background. Cement and concrete research, 31(4), pp.647-654. https://doi.org/10.1016/S0008-8846(01)00463-X
  30. Zhang, M. H., and Gjorv, O. E., 1991 : Effect of silica fume on cement hydration in low porosity cement pastes. Cement and Concrete Research, 21(5), pp.800-808. https://doi.org/10.1016/0008-8846(91)90175-H
  31. Eppelbaum, L., Kutasov, I., and Pilchin, A., 2014 : Thermal properties of rocks and density of fluids. In Applied geothermics. Springer Berlin Heidelberg, pp.99-149.
  32. Winnefeld, F., and Lothenbach, B., 2010 : Hydration ofcalcium sulfoaluminate cements-experimental findings and thermodynamic modelling. Cement and Concrete Research, 40(8), pp.1239-1247. https://doi.org/10.1016/j.cemconres.2009.08.014
  33. Govindarajan, D., and Gopalakrishnan, R., 2011 : Spectroscopic studies on Indian Portland cement hydrated with distilled water and sea water. Frontiers in Science, 1(1), pp.21-27. https://doi.org/10.5923/j.fs.20110101.04
  34. Yousuf, M., Mollah, A., Hess, T. R., Tsai, Y. N., and Cocke, D. L., 1993 : An FTIR and XPS investigations of the effects of carbonation on the solidification/stabilization of cement based systems-Portland type V with zinc. Cement and Concrete Research, 23(4), pp.773-784. https://doi.org/10.1016/0008-8846(93)90031-4
  35. Palomo, A., Blanco-Varela, M. T., Granizo, M. L., Puertas, F., Vazquez, T., and Grutzeck, M. W., 1999 : Chemical stability of cementitious materials based on metakaolin. Cement and Concrete Research, 29(7), pp.997-1004. https://doi.org/10.1016/S0008-8846(99)00074-5
  36. Omotoso, O. E., Ivey, D. G., and Mikula, R., 1998 : Containment mechanism of trivalent chromium in tricalcium silicate. Journal of hazardous materials, 60(1), pp.1-28. https://doi.org/10.1016/S0304-3894(97)00037-X
  37. Peyvandi, A., Holmes, D., Soroushian, P., and Balachandra, A. M., 2014 : Monitoring of sulfate attack in concrete by $Al^{27}$ and $Si^{29}$ MAS NMR spectroscopy. Journal of Materials in Civil Engineering, 27(8), 04014226. https://doi.org/10.1061/(ASCE)MT.1943-5533.0001175
  38. Hughes, T. L., Methven, C. M., Jones, T. G., Pelham, S. E., Fletcher, P., and Hall, C., 1995 : Determining cement composition by Fourier transform infrared spectroscopy. Advanced Cement Based Materials, 2(3), pp.91-104. https://doi.org/10.1016/1065-7355(94)00031-X
  39. Springfield, T., 2011 : Application of FTIR for Quantification of Alkali in Cement. University of North Texas. 42-50
  40. Nasrazadani, S., and Springfield, T., 2014 : Application of Fourier transform infrared spectroscopy in cement Alkali quantification. Materials and structures, 47(10), pp.1607-1615. https://doi.org/10.1617/s11527-013-0140-3

Cited by

  1. 알칼리 활성 슬래그의 수화에 대한 개선된 화학양론적 모델 vol.9, pp.1, 2021, https://doi.org/10.14190/jrcr.2021.9.1.1