• Title/Summary/Keyword: non-circular

Search Result 650, Processing Time 0.025 seconds

A Study on Eye Detection by Using Adaboost for Iris Recognition in Mobile Environments (Adaboost를 이용한 모바일 환경에서의 홍채인식을 위한 눈 검출에 관한 연구)

  • Park, Kang-Ryoung;Park, Sung-Hyo;Cho, Dal-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.4
    • /
    • pp.1-11
    • /
    • 2008
  • In this paper, we propose the new eye detection method by using adaboost (adaptive boosting) method. Also, to reduce the false alarm rate which identifies the non-eye region as genuine eye that is the Problems of previous method using conventional adaboost, we proposed the post processing methods which used the cornea specular reflection and determined the optimized ratio of eye detecting box. Based on detected eye region by using adaboost, we performed the double circular edge detector for localizing a pupil and an iris region at the same time. Experimental results showed that the accuracy of eye detection was about 98% and the processing time was less than 1 second in mobile device.

Dynamic PIV Measurements of Wake behind a Rotationally Oscillating Circular Cylinder (주기적으로 회전진동하는 원주 후류의 Dynamic PIV 속도장 측정)

  • Lee, Jung-Yeop;Lee, Sang-Joon
    • 한국가시화정보학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.134-137
    • /
    • 2007
  • The temporal evolution of wake behind a circular cylinder oscillating rotationally with a relatively high forcing frequency has been investigated experimentally using a dynamic PIV technique. Experiments were carried out with varying the frequency ratio $F_R\;(=f_f/f_n)$ in the range from 0.0 (stationary) to 1.6 at oscillation amplitude of ${\theta}_A=30^{\circ}$ and Reynolds number of $Re=4.14{\times}10^3$. Depending on the forcing condition ($F_R$), the flow was divided into three regimes; non-lock-on ($F_R=0.4$), transition ($F_R=0.8$, 1.6) and lock-on regimes ($F_R=1.0$) with markedly different flow structure in the near-wake region behind the cylinder. When the frequency ratio was less than 1.0 ($F_R{\le}1.0$), the rotational oscillatory motion of the cylinder decreased the length of the vortex formation region and enhanced the mutual interaction between large-scale vortices across the wake centerline. The entrainment of ambient fluid seemed to play an important role in controlling the near-wake flow and shear-layer instability. However, the flow characteristics changed markedly beyond the lock-on flow regime ($F_R=1.0$) due to high-frequency forcing. At $F_R=1.6$, the mutual interactions between the vortices shed from both sides of the cylinder were not so strong. Thereby, the flow entrainment and momentum transfer into the wake center region were reduced. In addition, the size of the large-scale vortices decreased since the lateral extent of the wake was suppressed.

  • PDF

On the Vorticity and Pressure Boundary Conditions for Viscous Incompressible Flows (비압축성 점성유동의 와도와 압력 경계조건)

  • Suh J.-C.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.05a
    • /
    • pp.15-28
    • /
    • 1998
  • As an alternative for solving the incompressible Navier-Stokes equations, we present a vorticity-based integro-differential formulation for vorticity, velocity and pressure variables. One of the most difficult problems encountered in the vorticity-based methods is the introduction of the proper value-value of vorticity or vorticity flux at the solid surface. A practical computational technique toward solving this problem is presented in connection with the coupling between the vorticity and the pressure boundary conditions. Numerical schemes based on an iterative procedure are employed to solve the governing equations with the boundary conditions for the three variables. A finite volume method is implemented to integrate the vorticity transport equation with the dynamic vorticity boundary condition . The velocity field is obtained by using the Biot-Savart integral derived from the mathematical vector identity. Green's scalar identity is used to solve the total pressure in an integral approach similar to the surface panel methods which have been well-established for potential flow analysis. The calculated results with the present mettled for two test problems are compared with data from the literature in order for its validation. The first test problem is one for the two-dimensional square cavity flow driven by shear on the top lid. Two cases are considered here: (i) one driven both by the specified non-uniform shear on the top lid and by the specified body forces acting through the cavity region, for which we find the exact solution, and (ii) one of the classical type (i.e., driven only by uniform shear). Secondly, the present mettled is applied to deal with the early development of the flow around an impulsively started circular cylinder.

  • PDF

Seismic Performance of Circular Concrete Bridge Piers Externally Strengthened by Carbon Fiber Reinforced Polymer (탄소섬유강화 플라스틱(CFRP)로 보강된 원형콘크리트 교각의 지진성능 평가)

  • Catuira, Mabel;Park, Jong Sup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.2
    • /
    • pp.197-208
    • /
    • 2020
  • This paper evaluated the optimum Carbon Fiber Reinforced Polymer (CFRP) using a circular concrete bridge pier subjected to dynamic loading. A three-dimensional finite element model was simulated using finite element program, ABAQUS. Concrete Damage Plasticity (CDP) option and plastic properties of the materials were incorporated to model the non-linearity of the structure. The analyses parameters were changed in length-to-height ratio and width-to-span ratio where columns were subjected to dynamic loading. Numerical analysis was conducted, and the seismic performance of the structures were evaluated by analyzing the ductility behavior of the structure. Results showed that the use of CFRP enhances the structural performance of column and revealed that the increase in length-to-height ratio plays vital role of improving the performance of the structure than the change in width-to-span ratio.

Thermal Denaturation of the Apo-cyclic AMP Receptor Protein and Noncovalent Interactions between Its Domains

  • Won, Hyung-Sik;Seo, Min-Duk;Ko, Hyun-Suk;Choi, Wahn Soo;Lee, Bong-Jin
    • Molecules and Cells
    • /
    • v.26 no.1
    • /
    • pp.61-66
    • /
    • 2008
  • Cyclic AMP receptor protein (CRP) is allosterically activated by cAMP and functions as a global transcription regulator in enteric bacteria. Structural information on CRP in the absence of cAMP (apo-CRP) is essential to fully understand its allosteric behavior. In this study we demonstrated interdomain interactions in apo-CRP, using a comparative thermodynamic approach to the intact protein and its isolated domains, which were prepared either by limited proteolysis or using recombinant DNA. Thermal denaturation of the intact apo-CRP, monitored by differential scanning calorimetry, revealed an apparently single cooperative transition with a slight asymmetry. Combined with circular dichroism and fluorescence analysis, the thermal denaturation of apo-CRP could be interpreted as a coupled process involving two individual transitions, each attributable to a structural domain. When isolated individually, both of the domains exhibited significantly altered thermal behavior, thus pointing to the existence of non-covalent interdomain interactions in the intact apo-CRP. These observations suggest that the allosteric conformational change of CRP upon binding to cAMP is achieved by perturbing or modifying pre-existing interdomain interactions. They also underline the effectiveness of a comparative approach using calorimetric and structural probes for studying the thermodynamics of a protein.

A Study of the SPWM High-Frequency Harmonic Circulating Currents in Modular Inverters

  • Xu, Sheng;Ji, Zhendong
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2119-2128
    • /
    • 2016
  • Due to detection and control errors, some high-frequency harmonics with voltage-source characteristics cause circulating currents in modular inverters. Moreover, the circulating currents are usually affected by the output filters (OF) of each module due to their filter and resonance properties. The interaction among the circulating currents in the modules increase the power loss and reduce system stability and control precision. Therefore, this paper reports the results of a study on the SPWM high-frequency harmonics circulating currents for a double-module VSI. In the paper, an analysis of the circulating-current circuits is briefly described. Next, a mathematic model of the single-module output voltage based on the carrier frequency of SPWM is built. On this basis, through mathematic modeling of high-frequency harmonic circulating currents, the formation mechanism and distribution characteristics of circular currents and their influences are studied in detail. Finally, the influences of the OF on the circulating currents are studied by mainly taking an LC-type filter as an example. A theoretical analysis and experimental results demonstrate some important characteristics. First, the carrier phase shifting of the SPWM for each module is the major cause of the SPWM harmonic circulating currents, and the circulating currents are in an odd distribution around n-times the carrier frequency $n{\omega}_s$, where n = 1, 2, 3, ${\ldots}$. Second, the harmonic circular currents do not flow into the parallel system. Third, the OF can effectively suppress the non-circulating part of the high-frequency harmonic currents but is ineffective for the circulation part, and actually reduces system stability.

Dynamically Collimated CT Scan and Image Reconstruction of Convex Region-of-Interest (동적 시준을 이용한 CT 촬영과 볼록한 관심영역의 영상재구성)

  • Jin, Seung Oh;Kwon, Oh-Kyong
    • Journal of Biomedical Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.151-159
    • /
    • 2014
  • Computed tomography (CT) is one of the most widely used medical imaging modality. However, substantial x-ray dose exposed to the human subject during the CT scan is a great concern. Region-of-interest (ROI) CT is considered to be a possible solution for its potential to reduce the x-ray dose to the human subject. In most of ROI-CT scans, the ROI is set to a circular shape whose diameter is often considerably smaller than the full field-of-view (FOV). However, an arbitrarily shaped ROI is very desirable to reduce the x-ray dose more than the circularly shaped ROI can do. We propose a new method to make a non-circular convex-shaped ROI along with the image reconstruction method. To make a ROI with an arbitrary convex shape, dynamic collimations are necessary to minimize the x-ray dose at each angle of view. In addition to the dynamic collimation, we get the ROI projection data with slightly lower sampling rate in the view direction to further reduce the x-ray dose. We reconstruct images from the ROI projection data in the compressed sensing (CS) framework assisted by the exterior projection data acquired from the pilot scan to set the ROI. To validate the proposed method, we used the experimental micro-CT projection data after truncating them to simulate the dynamic collimation. The reconstructed ROI images showed little errors as compared to the images reconstructed from the full-FOV scan data as well as little artifacts inside the ROI. We expect the proposed method can significantly reduce the x-ray dose in CT scans if the dynamic collimation is realized in real CT machines.

Unsteady laminar boundary layer over a heated circular cylinder started impulsively from rest (갑자기 출발하는 가열된 원통 주위의 비정상 충류경계층 유동에 관한 수치적 연구)

  • 김재수;장근식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.11 no.2
    • /
    • pp.262-270
    • /
    • 1987
  • A numerical method is presented which can solve the unsteady momentum and thermal boundary layers, coupled through the agency of buoyancy force, over a heated circular cylinder impulsively started from rest. By linearizing the nonlinear finite difference equations without sacrificing accuracy, numerical solutions are obtained at each time step without iteration. To get rid of the requirement of excessive number of grid points in the region of reversed flow, special form of transformed variables are used, by which the computational boundary layer thickness is maintained almost constant. These numerical properties enable the method to easily handle the region of reversed flow and how the singularity develops in the interior of the boundary layer. In order to investigated the thermal effects on the skin friction, heat flux, displacement thickness and on the separation, we have successfully solved three different cases of the buoyancy parameter .alpha.(Gr/Re$^{2}$).

Nonlinear Analysis of RC Bridge Columns for Ductility Evaluation (철근콘크리트 교각의 연성도 평가를 위한 비선형해석)

  • 손혁수;이재훈
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.4
    • /
    • pp.39-49
    • /
    • 2003
  • This research is a part of a research program to develope a new design method for reinforced concrete bridge columns under axial load and cyclic lateral load. A nonlinear analytical method is proposed to obtain moment-curvature relationship and lateral load-displacement relationship. Various analytical models that contribute seismic behavior of reinforced concrete bridge columns are adopted and modified by comparing quasi-static test results of reinforced concrete columns with spirals of circular hoops. The analysis adopts confined concrete model, longitudinal reinforcement test result of reinforced concrete columns with spirals or circular hoops. The analysis adopts confined concrete model, etc. The results obtained using the propose analytical method agree well with test results and give conservative estimations particularly for deformation capacity and ductility.

Geodetic monitoring on onshore wind towers: Analysis of vertical and horizontal movements and tower tilt

  • Canto, Luiz Filipe C.;de Seixas, Andrea
    • Structural Monitoring and Maintenance
    • /
    • v.8 no.4
    • /
    • pp.309-328
    • /
    • 2021
  • The objective of this work was to develop a methodology for geodetic monitoring on onshore wind towers, to ascertain the existence of displacements from object points located in the tower and at the foundation's base. The geodesic auscultation was carried out in the Gravatá 01 and 02 wind towers of the Eólica Gravatá wind farm, located in the Brazilian municipality of Gravatá-PE, using a stable Measurement Reference System. To verify the existence of displacements, pins were implanted, with semi-spherical surfaces, at the bases of the towers being monitored, measured by means of high-precision geometric leveling and around the Gravatá 02 tower, concrete landmarks, iron rods and reflective sheets were implanted, observed using geodetic/topographic methods: GNSS survey, transverse with forced centering, three-dimensional irradiation, edge measurement method and trigonometric leveling of unilateral views. It was found that in the Gravatá 02 tower the average rays of the circular sections of the transverse welds (ST) were 1.8431 m ± 0.0005 m (ST01) and 1.6994 m ± 0.0268 m of ST22, where, 01 and 22 represent the serial number of the transverse welds along the tower. The average calculation of the deflection between the coordinates of the center of the circular section of the ST22 and the vertical reference alignment of the ST1 was 0°2'39.22" ± 2.83" in the Northwest direction and an average linear difference of 0.0878 m ± 0.0078 m. The top deflection angle was 0°8'44.88" and a linear difference of ± 0.2590 m, defined from a non-linear function adjusted by Least Squares Method (LSM).