Thermal Denaturation of the Apo-cyclic AMP Receptor Protein and Noncovalent Interactions between Its Domains

  • Won, Hyung-Sik (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Seo, Min-Duk (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University) ;
  • Ko, Hyun-Suk (Department of Biotechnology, College of Biomedical and Health Science, Konkuk University) ;
  • Choi, Wahn Soo (Department of Immunology, College of Medicine, Konkuk University) ;
  • Lee, Bong-Jin (Research Institute of Pharmaceutical Sciences, College of Pharmacy, Seoul National University)
  • Received : 2007.11.16
  • Accepted : 2008.02.05
  • Published : 2008.07.31

Abstract

Cyclic AMP receptor protein (CRP) is allosterically activated by cAMP and functions as a global transcription regulator in enteric bacteria. Structural information on CRP in the absence of cAMP (apo-CRP) is essential to fully understand its allosteric behavior. In this study we demonstrated interdomain interactions in apo-CRP, using a comparative thermodynamic approach to the intact protein and its isolated domains, which were prepared either by limited proteolysis or using recombinant DNA. Thermal denaturation of the intact apo-CRP, monitored by differential scanning calorimetry, revealed an apparently single cooperative transition with a slight asymmetry. Combined with circular dichroism and fluorescence analysis, the thermal denaturation of apo-CRP could be interpreted as a coupled process involving two individual transitions, each attributable to a structural domain. When isolated individually, both of the domains exhibited significantly altered thermal behavior, thus pointing to the existence of non-covalent interdomain interactions in the intact apo-CRP. These observations suggest that the allosteric conformational change of CRP upon binding to cAMP is achieved by perturbing or modifying pre-existing interdomain interactions. They also underline the effectiveness of a comparative approach using calorimetric and structural probes for studying the thermodynamics of a protein.

Keywords

Acknowledgement

Supported by : Korea Research Foundation

References

  1. Angulo, J.A., and Krakow, J.S. (1985). Effect of deoxyribopolymers and ribopolymers on the sensitivity of the cyclic-AMP receptor protein of Escherichia coli to proteolytic attack. Arch. Biochem. Biophys. 236, 11-16 https://doi.org/10.1016/0003-9861(85)90600-9
  2. Benoff, B., Yang, H., Lawson, C.L., Parkinson, G., Liu, J., Blatter, E., Ebright, Y.W., Berman, H.M., and Ebright, R.H. (2002). Structural basis of transcription activation: the CAP-$\alpha$CTD-DNA complex. Science 297, 1562-1566 https://doi.org/10.1126/science.1076376
  3. Blandamer, M.J., Briggs, B., Cullis, P.M., Jackson, A.P., Maxwell, A., and Reece, R.J. (1994). Domain structures of Escherichia coli DNA gyrase as revealed by differential scanning calorimetry. Biochemistry 33, 7510-7516 https://doi.org/10.1021/bi00190a003
  4. Blaszczyk, U., and Wasylewski, Z. (2003). Interaction of cAMP receptor protein from Escherichia coli with cAMP and DNA studied by differential scanning calorimetry. J. Prot. Chem. 22, 285- 293 https://doi.org/10.1023/A:1025024604677
  5. Botsford, J.L., and Harman, J.G. (1992). Cyclic AMP in prokaryotes. Microbiol. Rev. 56, 100-122
  6. Byrne, M.P., and Stites, W.E. (2007). Thermal denaturations of staphylococcal nuclease wild-type and mutants monitored by fluorescence and circular dichroism are similar: lack of evidence for other than a two state thermal denaturation. Biophys. Chem. 125, 490-496 https://doi.org/10.1016/j.bpc.2006.10.014
  7. Cheng, X., Gonzalez, M.L., and Lee, J.C. (1993). Energetics of intersubunit and intrasubunit interactions of Escherichia coli adenosine cyclic 3′,5′-phosphate receptor protein. Biochemistry 32, 8130-8139 https://doi.org/10.1021/bi00083a011
  8. Chu, S.Y., Tordova, M., Gilliland, G.L., Gorshkova, I., Shi, Y., Wang, S., and Schwarz, F.P. (2001). The structure of the T127L/S128A mutant of cAMP receptor protein facilitates promoter site binding. J. Biol. Chem. 276, 11230-11236 https://doi.org/10.1074/jbc.M010428200
  9. Clore, G.M., and Gronenborn, A.M. (1982). Proton nuclear magnetic resonance study of the histidine residues of the Escherichia coli adenosine cyclic 3′,5′-phosphate receptor protein. Biochemistry 21, 4048-4053 https://doi.org/10.1021/bi00260a021
  10. den Blaauwen, T., van der Wolk, J.P.W., van der Does, C., van Wely, K.H.M., and Driessen, A.J.M. (1999). Thermodynamics of nucleotide binding to NBS-I of the Bacillus subtilis translocase subunit SecA. FEBS Lett. 458, 145-150 https://doi.org/10.1016/S0014-5793(99)01139-4
  11. Eun, S.-Y., Jang, H.-K., Han, S.-K., Ryu, P.-D., Lee, B.-J., Han, K.- H., and Kim, S.-J. (2006). A helix-induced oligomeric transition of gaegurin 4, an antimicrobial peptide isolated from a Korean frog. Mol. Cells 21, 229-236
  12. Ghosaini, L.R., Brown, A.M., and Sturtevant, J.M. (1998). Scanning calorimetric study of the thermal unfolding of catabolite activator protein from Escherichia coli in the absence and presence of cyclic mononucleotides. Biochemistry 27, 5257-5261 https://doi.org/10.1021/bi00414a046
  13. Gronenborn, A.M., and Clore, G.M. (1986). Overproduction of the cyclic AMP receptor protein of Escherichia coli and expression of the engineered C-terminal DNA-binding domain. Biochem. J. 236, 643-649 https://doi.org/10.1042/bj2360643
  14. Harman, J.G. (2001) Allosteric regulation of the cAMP receptor protein. Biochim. Biophys. Acta 1547, 1-17 https://doi.org/10.1016/S0167-4838(01)00187-X
  15. Heyduk, T., Lee, J.C., Ebright, Y.W., Blatter, E.E., Zhou, Y., and Ebright, R.H. (1993). CAP interacts with RNA polymerase in solution in the absence of promoter DNA. Nature 364, 548-549 https://doi.org/10.1038/364548a0
  16. Hollands, K., Busby, S.J.W., and Lloyd, G.S. (2007). New targets for the cyclic AMP receptor protein in the Escherichia coli K-12 genome. FEMS Microbiol. Lett. 274, 89-94 https://doi.org/10.1111/j.1574-6968.2007.00826.x
  17. Johnson, C.R., Morin, P.E., Arrowsmith, C.H., and Freire, E. (1995). Thermodynamic analysis of the structural stability of the tetrameric oligomerization domain of p53 tumor suppressor. Biochemistry 34, 5309-5316 https://doi.org/10.1021/bi00016a002
  18. Kolb, A., Busby, S., Buc, H., Garges, S., and Adhya, S. (1993). Transcriptional regulation by cAMP and its receptor protein. Annu. Rev. Biochem. 62, 749-795 https://doi.org/10.1146/annurev.bi.62.070193.003533
  19. Krupakar, J., Swaminathan, C.P., Das, P.K., Surolia, A., and Podder, S.K. (1999). Calorimetric studies on the stability of the ribosome- inactivating protein abrin II: effects of pH and ligand binding. Biochem. J. 338, 273-279 https://doi.org/10.1042/0264-6021:3380273
  20. Lawson, C.L., Swigon, D., Murakami, K.S., Darst, S.A., Berman, H.M., and Ebright, R.H. (2004). Catabolite activator protein: DNA binding and transcription activation. Curr. Opin. Struct. Biol. 14, 10-20 https://doi.org/10.1016/j.sbi.2004.01.012
  21. Lee, C.-J., Won, H.-S., Kim, J.-M., Lee, B.-J., and Kang, S.-O. (2007). Molecular domain organization of BldD, an essential transcriptional regulator for developmental process of Streptomyces coelicolor A3(2). Proteins 68, 344-352 https://doi.org/10.1002/prot.21338
  22. Lee, T.-W., Won, H.-S., Park, S.-H., and Lee, B.-J. (2001). Detection of the protein-protein interaction between cyclic AMP receptor protein and RNA polymerase, by 13C-carbonyl NMR. J. Biochem. 130, 57-61 https://doi.org/10.1093/oxfordjournals.jbchem.a002962
  23. Lee, Y.-H., Won, H.-S., Lee, M.-H., and Lee, B.-J. (2002). Effects of salt and nickel ion on the conformational stability of Bacillus pasteurii UreE. FEBS Lett. 522, 135-140 https://doi.org/10.1016/S0014-5793(02)02919-8
  24. Li, J., Cheng, X., and Lee, J.C. (2002). Structure and dynamics of the modular halves of Escherichia coli cyclic AMP receptor protein. Biochemistry 41, 14771-14778 https://doi.org/10.1021/bi026383q
  25. Orlov, V.N., Rostkova, E.V., Nikolaeva, O.P., Drachev, V.A., Gusev, N.B., and Levitsky, D.I. (1998). Thermally induced chain exchange of smooth muscle tropomyosin dimers studied by differential scanning calorimetry. FEBS Lett. 433, 241-244 https://doi.org/10.1016/S0014-5793(98)00923-5
  26. Pabo, C.O., Sauer, R.T., Sturtevant, J.M., and Ptashne, M. (1979). The $\lambda$ repressor contains two domains. Proc. Natl. Acad. Sci. USA 76, 1608-1612
  27. Parkinson, G., Wilson, C., Gunasekera, A., Ebright, Y.W., Ebright, R.E., and Berman, H.M. (1996). Structure of the CAP-DNA complex at 2.5 angstroms resolution: a complete picture of the protein-DNA recognition. J. Mol. Biol. 260, 395-408 https://doi.org/10.1006/jmbi.1996.0409
  28. Passner, J.M., and Steitz, T.A. (1997). The structure of a CAP-DNA complex having two cAMP molecules bound to each monomer. Proc. Natl. Acad. Sci. USA 94, 2843-2847
  29. Passner, J.M., Schultz, S.C., and Steitz, T.A. (2000). Modeling the cAMP-induced allosteric transition using the crystal structure of CAP-cAMP at 2.1 A resolution. J. Mol. Biol. 304, 847-859 https://doi.org/10.1006/jmbi.2000.4231
  30. Popovych, N., Sun, S., Ebright, R.H., and Kalodimos, C.G. (2006). Dynamically driven protein allostery. Nat. Struct. Mol. Biol. 13, 831-838 https://doi.org/10.1038/nsmb1132
  31. Privalov, P.L. (1982). Stability of proteins: proteins which do not present a single cooperative system. Adv. Protein Chem. 35, 1- 104 https://doi.org/10.1016/S0065-3233(08)60468-4
  32. Rodger, A., and Norden, B. (1997). Circular dichroism of biomolecules. In Circular Dichroism and Linear Dichroism (Oxford, UK: Oxford University Press), pp. 15-32
  33. Schultz, S.C., Shields, G.C., and Steitz, T.A. (1991). Crystal structure of a CAP-DNA complex: the DNA is bent by 90 degrees. Science 253, 1001-1007 https://doi.org/10.1126/science.1653449
  34. Sreerama, N., and Woody, R.W. (2000). Circular dichroism of peptides and proteins. In Circular Dichroism: Principles and Applications, N. Berova, K. Nakanishi, and R.W. Woody, 2nd eds. (New York, USA: WILEY-VCH), pp. 601-620
  35. Weber, I.T., and Steitz, T.A. (1987). Structure of a complex of catabolite gene activator protein and cyclic AMP refined at 2.5 A resolution. J. Mol. Biol. 198, 311-326 https://doi.org/10.1016/0022-2836(87)90315-9
  36. Wenk, M., Jaenicke, R., and Mayr, E.-M. (1998). Kinetic stabilization of a modular protein by domain interactions. FEBS Lett. 438, 127-130 https://doi.org/10.1016/S0014-5793(98)01287-3
  37. Won, H.-S., Yamazaki, T., Lee, T.-W., Yoon, M.-K., Park, S.-H., Kyogoku, Y., and Lee, B.-J. (2000). Structural understanding of the allosteric conformational change of cyclic AMP receptor protein by cyclic AMP binding. Biochemistry 45, 13953-13962
  38. Won, H.-S., Lee, T.-W., Park, S.-H., and Lee, B.-J. (2002). Stoichiometry and structural effect of the cyclic nucleotide binding to cyclic AMP receptor protein. J. Biol. Chem. 277, 11450-11455 https://doi.org/10.1074/jbc.M112411200
  39. Won, H.-S., Jung, S.-J., Kim, H.E., Seo, M.-D., and Lee, B.-J. (2004a). Systematic peptide engineering and structural characterization to search for the shortest antimicrobial peptide analogue of gaegurin 5. J. Biol. Chem. 279, 14784-14791 https://doi.org/10.1074/jbc.M309822200
  40. Won, H.-S., Kim, S.S., Jung, S.-J., Son, W.-S., Lee, B., and Lee, B.- J. (2004b). Structure-activity relationships of antimicrobial peptides from the skin of Rana esculenta inhabiting in Korea. Mol. Cells 17, 469-476
  41. Zaiss, K., and Jaenicke, R. (1999). Thermodynamic study of phosphoglycerate kinase from Thermotoga maritima and its isolated domains: reversible thermal unfolding monitored by differential scanning calorimetry and circular dichroism spectroscopy. Biochemistry 38, 4633-4639 https://doi.org/10.1021/bi982447e