• Title/Summary/Keyword: non-circular

Search Result 650, Processing Time 0.029 seconds

CIRCULAR SPECTRUM AND ASYMPTOTIC PERIODIC SOLUTIONS TO A CLASS OF NON-DENSELY DEFINED EVOLUTION EQUATIONS

  • Le Anh Minh;Nguyen Ngoc Vien
    • Communications of the Korean Mathematical Society
    • /
    • v.38 no.4
    • /
    • pp.1153-1162
    • /
    • 2023
  • In this paper, for the bounded solution of the non-densely defined non-autonomous evolution equation, we present the condition for asymptotic periodicity by using the circular spectral theory of functions on the half line and the extrapolation theory of non-densely defined evolution equation.

Pulsatile Flow Analyses of Newtonian Fluid and Non-Newtonian Pluid in Circular Tube (원관내 뉴턴유체와 비뉴턴유체의 맥동유동특성)

  • Cho, Min-Tae;Roh, Hyung-Woon;Suh, Sang-Ho;Kim, Jae-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.26 no.11
    • /
    • pp.1585-1596
    • /
    • 2002
  • The objectives of the present study are to numerically and experimentally investigate the steady and pulsatile flow phenomena in the circular tubes, to quantitatively compare the flow characteristics of Newtonian and non-Newtonian fluids, and to find meaningful hemodynamic information through the flow analysis in the human blood vessels. The particle image velocimetry is adopted to visualize the flow fields in the circular tube. and the results from the particle image velocimetry are used to validate the results of the numerical analysis. In order to investigate the blood flow phenomena in the circular tube. constitutive equations, which are suitable to describe the rheological properties of the non-Newtonian fluids. are determined, and the steady and pulsatile momentum equations are solved by the finite volume prediction. The velocity vectors of the steady and pulsatile flow in the circular tube obtained by the particle image velocimetry arc in good agreement with those by the numerical analysis. For the given mass flow rate. the axial velocity profiles of the Newtonian and the non-Newtonian fluids appear differently. The pulsatile flow phenomena of the Newtonian and the non-Newtonian fluids are quite different from those of the steady flow.

Buckling Characteristic of Non-Circular Closed Composite Shells (비원형 폐합쉘의 좌굴특성)

  • Park, Won-Tae;Chun, Kyoung-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.1 no.2
    • /
    • pp.36-43
    • /
    • 2010
  • In this study, the buckling loads and mode shapes characteristic of circular and non-circular(elliptical) closed composite shells were analyzed. To analyses the buckling behaviors, we develop and report an improved generalized shell element called 4EAS-FS through a combination of enhanced assumed strain and the substitute shear strain fields. A flat shell element has been developed by combining membrane element with drilling degree-of-freedom and a plate bending element. The combined influences of length, thicknesses, cross-sectional parameters, and fiber-angle on the critical buckling loads and mode shapes of circular and non-circular(elliptical) closed shells are examined.

  • PDF

Buckling and Vibration of Laminated Composite Non-Circular Cylindrical Shells (비원형 단면을 가진 적층복합재료원통셸의 좌굴 및 진동해석)

  • 이영신;안상균;이우식
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.13 no.5
    • /
    • pp.807-819
    • /
    • 1989
  • Buckling and vibration of laminated non-circular cylindrical shells with constant thickness and simply supported boundary condition is considered. Governing equations are derived based on the Donnell and Flugge shell theory and Galerkin method is applied for the numerical analysis. Comparisons are made between present results and others. Variations of frequency parameter and buckling load parameter on the change of stacking angle, eccentricity parameter and shell theories are investigated. Conclusion of this study is as follows: (1) General solutions of buckling and vibration of laminated non-circular cylindrical shell are obtained. (2) Frequency parameter is decreased as the initial axial load is increased. (3) In general, frequency and buckling load parameter of laminated non-circular cylindrical shells are decreased as increasing of eccentricity parameter and stacking angle.

Aggregate shape influence on the fracture behaviour of concrete

  • Azevedo, N.Monteiro;Lemos, J.V.
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.411-427
    • /
    • 2006
  • The Discrete Element Method, DEM, is increasingly used in fracture studies of non-homogeneous continuous media, such as rock and concrete. A 2D circular rigid DEM formulation, developed to model concrete, has been adopted. A procedure developed to generate aggregate particles with a given aspect ratio and shape is presented. The aggregate particles are modelled with macroparticles formed by a group of circular particles that behave as a rigid body. Uniaxial tensile and compression tests performed with circular and non-circular aggregates, with a given aspect ratio, have shown similar values of fracture toughness when adopting uniform strength and elastic properties for all the contacts. Non-circular aggregate assemblies are shown to have higher fracture toughness when different strength and elastic properties are set for the matrix and for the aggregate/matrix contacts.

Exact deformation of an infinite rectangular plate with an arbitrarily located circular hole under in-plane loadings

  • Yang, Yeong-Bin;Kang, Jae-Hoon
    • Structural Engineering and Mechanics
    • /
    • v.58 no.5
    • /
    • pp.783-797
    • /
    • 2016
  • Exact solutions for stresses, strains, and displacements of a perforated rectangular plate by an arbitrarily located circular hole subjected to both linearly varying in-plane normal stresses on the two opposite edges and in-plane shear stresses are investigated using the Airy stress function. The hoop stress occurring at the edge of the non-central circular hole are computed and plotted. Stress concentration factors (the maximum non-dimensional hoop stresses) depending on the location and size of the non-central circular hole and the loading condition are tabularized.

Shape Optimization of the Cross Section for a Non-circular Spring Wire of Valve Springs for an Automotive Engine (자동차 엔진 밸브 스프링에 사용되는 비원형 스프링 선의 단면 형상 최적화)

  • Kim, Do-Joong;Kim, Young-Kyung
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.19 no.2
    • /
    • pp.117-124
    • /
    • 2011
  • Valve springs with non-circular cross-section are widely used in automotive engines. Because of the reduced height, the oval cross-section provides some merits in its install height and stress distribution. This paper introduces a new method to generate optimal shape of the non-circular cross-section. For given width and height, arbitrary shape of the cross-section are described using the Hermite spline curves. Cross-section area and maximum stress level are chosen as performance indices, and nonlinear optimization problems are formulated with inequality constraints. Compared to a production spring wire, cross-section area can be reduced about 2.4 [%] without increasing maximum stress level. In addition, the other approach gives an optimum cross-section which reduces maximum stress level of 2.0 [%] without increasing cross-section area.

Simulation of tracking errors for non-circular cutting using voice coil motor (VCM을 이용한 비원형 형상 가공의 궤적 오차 시뮬레이션)

  • Hwang J.D.;Kwak Y.K.;Kim S.H.;Ahan J.H.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.57-58
    • /
    • 2006
  • A Simulation model is developed to minimize the path tracking errors when the non-circular cutting is done by a VCM(voice coil motor) driven tool. The relationship between PWM(Pulse Width Modulation) duty ratio and velocity of voice coil motor is theoretically derived from combining the circuit equation for the coils and the motion equation for the magnetic rod of the voice coil motor. The path tracking errors are showed differently according to the rotational speed, the number of segments and the control period in digital control. Given a required accuracy in the non-circular cutting, the optimal values for those parameters are determined based on the developed simulation model.

  • PDF

Tests and numerical behavior of circular concrete-filled double skin steel tubular stub columns under eccentric loads

  • Manigandan R.;Manoj Kumar
    • Structural Engineering and Mechanics
    • /
    • v.88 no.3
    • /
    • pp.287-299
    • /
    • 2023
  • This article describes experimental and numerical analyses of eccentrically loaded over the axially loaded circular concrete filled double-skinned steel tubular (CFDST) short columns. Tests on circular CFDST short columns under eccentric and concentric loading were conducted to assess their responses to the frequent intensity of 5-30 mm at the interval of each 5 mm eccentric loading conditions with constant cross-sectional proportions and width-to-thickness ratios of the outside and internal tubes. The non-linear finite-element analysis of circular CFDST short columns of eccentrically loaded over the axially loaded was performed using the ABAQUS to predict the structural behavior and compare the concentric loading capacity over the various eccentric loading conditions. The comparison outcomes show that the axial compressive strength of the circular CDFST short columns was 2.38-32.86%, lesser than the concentrically loaded short column with the inner circular section. Also, the influence of computer simulation employed is more efficient in forecasting the experimentally examined performance of circular CFDST stub columns.

Non-linear Vibration Analysis for the In-plane Motion of a Semi-circular Pipe Conveying Fluid (유체를 수송하는 반원형 곡선관의 면내운동에 대한 비선형 진동 해석)

  • 정두한;정진태
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.677-682
    • /
    • 2003
  • The non-linear dynamic characteristics of a semi-circular pipe conveying fluid are investigated when the pipe is clamped at both ends. To consider the geometric non-linearity for the radial and circumferential displacements, this study adopts the Lagrange strain theory for large deformation and the extensible dynamics based on the Euler-Bernoulli beam theory for slenderness assumption. By using the Hamilton principle, the non-linear partial differential equations are derived for the in-plane motions of the pipe, considering the fluid inertia forces as a kind of non-conservative forces. The linear and non-linear terms in the governing equations are compared with those in the previous study, and some significant differences are discussed. To investigate the dynamic characteristics of the system, the discretized equations of motion are derived form the Galerkin method. The natural frequencies varying with the flow velocity are computed fen the two cases, which one is the linear problem and the other is the linearized problem in the neighborhood of the equilibrium position. Finally, the time responses at various flow velocities are directly computed by using the generalized- method. From these results, we should to describe the non-linear behavior to analyze dynamics of a semi-circular pipe conveying fluid more precisely.

  • PDF