• Title/Summary/Keyword: non aqueous phase liquid (NAPL)

Search Result 18, Processing Time 0.026 seconds

Removal of Benzene-Nonaqueous Phase liquid(NAPL) in Soil Tank by NAPL Swelling and Non-swelling alcohols (토양 탱크에서 흡수 알코올과 비흡수 알코올을 이용한 벤젠-비수용상액체 제거 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.17 no.3
    • /
    • pp.40-47
    • /
    • 2009
  • Coinjection of alcohol and air or alcohol flooding only were evaluated with 3-D soil tank for removal of nonaqueous phase liquid (NAPL) contaminant from soil. 70%-ethanol and 40%-isopropanol were used for non-NAPL-swelling alcohol and NAPL-swelling alcohol, respectively. 729 ml-benzene was placed in the 37 liter soil tank. Alcohols were respectively injected from the injection well placed near the bottom of the tank and mobilized free phase NAPL and aqueous phases were then recovered from the extraction well placed in the upper part of the soil tank. Approximately 50% of removed NAPLs were free-phase in all experiments. The results were completely different to the previous soil column experiment results and also implied that alcohol properties did not affect the NAPL removal efficiency in the 3-D soil tank experiment. Air was also co-injected with alcohol to evaluate co-injection effects on NAPL removal. Enhanced NAPL removal effect of co-injection of 70%-ethanol and air was also found even in the 3-D soil tank evaluation. However, co-injection effect of 40%-iso-propanol and air was less apparent. This study determined that the most important parameter governing alcohol flooding for NAPL removal would be extraction capacity to recover NAPL and aqueous phase flowing in the soil. More researches are required for improving recovery efficiency of extraction well in real soil contamination conditions.

Removal of Benzene-NAPL in Soil Column by Cosolvent Flooding (Cosolvent에 의한 토양 내 Benzene-NAPL 세정 연구)

  • Song, Chung-Hyun;Jeong, Seung-Woo;Lee, Byung-Jin;Go, Sung-Hwan
    • Journal of Soil and Groundwater Environment
    • /
    • v.13 no.3
    • /
    • pp.45-51
    • /
    • 2008
  • Removal of nonaqueous phase liquid present in the soil column by using cosolvent floods was investigated. The first objective of the study was to elucidate the removal mechanism of cosolvent flooding for benzene-NAPL. The second objective of the study was to evaluate the effects of the alchohol partitioning type (NAPL swelling and non-swelling) and concentration on NAPL removal efficiency from the soil column. The main NAPL removal mechanism of swelling alcohol was mobilization, while that of non-swelling alcohol was NAPL dissolution. The NAPL removal efficiency of swelling alcohol was more effective than that of non-swelling alcohol. Removal of Benzene NAPL entrapped in the soil would be effective under the cosolvent flood condition of alcohol content greater than 40% in volume.

이액상 시스템에서 토양으로부터 비수용성 액체로의 PAHs의 이동특성

  • 양지원;이재영
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2002.09a
    • /
    • pp.247-249
    • /
    • 2002
  • The transfer behaviors of three Polyarmatic hydrocarbons (PAHs) from soil to non-aqueous phase liquid (NAPL) were investigated. The three different PAHs were phenanthrene, anthracene, and pyrene. The used NAPLs were silicone oil and paraffine oil. The percentage of the remained PAHs into soil were similar without the relation to kinds of NAPLs. And the transfer of PAHs into NAPLs was fastened until 1 day as the increase of mixing rate but in the case of 450 rpm, the remained PAHs into soil was increased after 1 day because NAPLs was emulsified.

  • PDF

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area (계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발)

  • Suk, Heejun;Son, Bongho;Park, Sungmin;Jeon, Byonghun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.206-222
    • /
    • 2019
  • Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

토양내 총 NAPL과 공기접촉 NAPL의 측정을 위한 분별 NAPL 분배 추적자 기술의 개발

  • 최경민;김헌기
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.29-32
    • /
    • 2004
  • Gaseous partitioning tracer test has been used for determining the volume and spatial distribution of residual non-aqueous phase liquid (NAPL) in the unsaturated soils. In this study, an experimental method for measuring the content of gas-exposed NAPL as well as that of total NAPL in a sand during air sparging was developed. Two different gaseous phase NAPL-partitioning tracers were used; n-pentane, with very low water solubility, was used as the tracer that partitions into NAPL that is only in contact with the mobile gas, and chloroform, with fairly good water solubility, was selected for detecting total NAPL content in the sand. Helium and difluromethanewere used as the non- reactive tracer and water-partitioning tracers, respectively. Using n-decane as a model NAPL (NAPL saturation of 0.018), 25.6% of total NAPL was detected by n-pentane at the water saturation of 0.68. Oniy 9.1% of total NAPL was detected by n-pentane at the water saturation of 0.84. This result implies that the quantity of gas-exposed NAPL increased about three times when the water saturation decreased from 0.84 to 0.68. At the water saturation of 0.68, more than 90% of total NAPL was detected by chloroform while 65.8% of total NAPL was detected by chloroform at the water saturation of 0.84. Considering that the removal rate of NAPL during air sparging for NAPL-contaminated aquifer is expected to be greatly dependent upon the spatial arrangement of NAPL phase with respect to the mobile gas, this new approach may provide useful information for investigating the mass transfer process during air-driven remedial processes fer NAPL-contaminated subsurface environment.

  • PDF

계면활성제를 이용한 불균질 매질에서의 유기오염물(NAPL)의 정화효율에 관한 실험

  • 서형기;이민희;정상용
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.09a
    • /
    • pp.176-179
    • /
    • 2001
  • 비 수용성 유기오염물(NAPL; non-aqueous phase liquid)로 오염된 불균질 토양을 계면활 성제를 이용하여 정화할 경우 효율성을 알아보기 위해 칼럼 및 박스 실험을 실시하였다. 불 균질한 지하 내부구조는 정화효과에 커다란 영향을 끼치는 것으로 알려져 있으나 이에 대한 연구는 매우 미비한 형편이다. 2차원 불균질 분포를 잘 나타내주는 박스실험을 통하여 실제 지하매질에 가까운 조건에서 실험을 실시하였다. PCE(tetrachloroethylene)와 xylene이 NAPL로 올리에마이드(01eamide)가 비이온-계면활성제로 이용되었으며, 1%용액과 증류수를 주입하여 NAPL을 세정하였고 가스크로마토그래피를 이용하여 NAPL의 농도를 분석하였다. 계면활성제를 주입할 경우가 증류수를 주입할 때보다 최대유출농도가 약 200배 정도가 높게 나타났으며 빠른 시간 내에 대부분의 NAPL이 정화되었다. 본 실험을 통하여, 불균질 매질에서의 계면활성제를 이용한 토양세정방법의 효율성이 정량화 되었으며, 계면활성제를 이용한 채수주입법의 현장 적용가능성을 확인하였다.

  • PDF

Effect of NAPL(non-aqueous phase liquid) on enhanced biodegradation of phenanthrene

  • Cho, Joong-Hoon;Raina M. Miller;Yang, Ji-Won
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 1998.11a
    • /
    • pp.93-96
    • /
    • 1998
  • NAPL이 다핵방향족화합물의 하나인 phenanthrene 의 생분해에 미치는 영향을 알아보았다. Pseudomonas putida CRE7 을 이용한 실험에서 NAPL 의 첨가로 인한 가장 큰 차이는 미생물의 소수성의 변화였다. 소수성이 증대됨으로써 phenanthrene 의 가용성이 증대되었으며, 이로 인해 더 많은 양의 오염물 분해가 이루어졌다. 생물학적 분해의 관찰은 발생되어지는 $^{14}$ $CO_2$의 radioactivity 측정을 통해 이루어졌으며, 미생물의 소수성 측정은 bacterial adhesion to hydrocarbon (BATH) assay 를 이용하였다.

  • PDF

계면활성제를 이용한 토양내 유기오염물 (NAPL) 정화 방법의 연구

  • 이민희
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2000.11a
    • /
    • pp.96-98
    • /
    • 2000
  • Column experiments were peformed to evaluate the efficiency of surfactant flushing for remediation of non-aqueous phase liquid (NAPL) in the soil under controlled conditions. In column experiment less than 0.1 % of the original mass of tetrachloroethylene (PCE), remained in the column after 15 pore volumes of 1% sorbitan monooleate solution were passed through columns. To determine the influence of soil parameters that may affect the remediation process, column tests were repeated with different values of grain size, application rate, surfactant type, surfactant concentration, and solution viscosity (polymer mixed with surfactant). Experimental works suggest that surfactant flushing has a great potential to rapidly remove mass from NAPL in the soil.

  • PDF

시멘트/슬래그/Fe(II) 시스템에 의한 NAPL TCE의 분해 특성

  • 박정현;강완협;황인성;박주양
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.04a
    • /
    • pp.218-222
    • /
    • 2004
  • Batch slurry experiments were conducted to develop cement/slag/Fe(II) system that could treat hazardous liquid wastes containing halogenated organic solvents. Portland cement in combination with Fe(II) was reported to reductively dechlorinate chlorinated organics in a modified solidification/stabilization process. TCE (trichloroethylene) was used a model halogenated organic solvent. The objectives of this study were to assess the feasibility of using cement and steel converter slag amended with Fe(II) as a low cost abiotic reductive dechlorination and to investigate the kinetics of TCE dechlorination over a wide range of TCE concentration. From the result of screening experiments, cement/slag/Fe(II) system was identified as a potentially effective system to treat halogenated organic solvent. Kinetic studies were carried out to further investigate degradation reaction of TCE NAPL (Non Aqueous Phase Liquids) in cement/slag/Fe(II) systems by using batch slurry reactors. Degradation rate of TCE solution in this system can be explained by pseudo-first-order rate law because the prediction with the rate law is in good agreement with the observed data.

  • PDF

Activated Carbon Performance for the Treatment of Diesel-Derived Polycyclic Aromatic Hydrocarbons

  • Choi, Yongju;Luthy, Richard G.
    • Ecology and Resilient Infrastructure
    • /
    • v.2 no.2
    • /
    • pp.177-184
    • /
    • 2015
  • This study assessed the performance of activated carbon (AC) amendment to treat polycyclic aromatic hydrocarbons (PAHs) including both parent- and alkylated-moieties in sediment impacted by diesel. A field-collected, diesel-impacted sediment with a NAPL content of 1% was used for the study. No. 2 diesel fuel is weathered by heating at $70^{\circ}C$ for 4 days to obtain a weathered diesel sample having C3-naphthalenes to C2-phenanthrenes/anthracenes (N2/P3) ratio similar to the original sediment. The sediment samples spiked with the weathered diesel to obtain non-aqueous phase liquid (NAPL) contents of 1, 5 and 10% were contacted with AC with a dose of 5% as sediment dry weight for 1 month. By the AC-sediment contact, the freely-dissolved equilibrium concentrations were substantially reduced. Even for sediment with 10% NAPL content, the reductions in the freely-dissolved concentrations were 92% and 75% for total parent-and alkylated-PAHs, respectively. The effect of NAPL contents on the performance of AC was negligible for parent-PAHs, while for alkylated-PAHs, a slightly reduced AC performance was observed. The results suggest that the AC amendment can be an effective option for the treatment of petroleum-impacted sediment with relatively high NAPL contents.