Removal of Benzene-NAPL in Soil Column by Cosolvent Flooding

Cosolvent에 의한 토양 내 Benzene-NAPL 세정 연구

  • 송충현 (군산대학교 토목환경공학부 환경공학) ;
  • 정승우 (군산대학교 토목환경공학부 환경공학) ;
  • 이병진 (군산대학교 토목환경공학부 환경공학) ;
  • 고성환 ((주)에코필)
  • Published : 2008.06.30

Abstract

Removal of nonaqueous phase liquid present in the soil column by using cosolvent floods was investigated. The first objective of the study was to elucidate the removal mechanism of cosolvent flooding for benzene-NAPL. The second objective of the study was to evaluate the effects of the alchohol partitioning type (NAPL swelling and non-swelling) and concentration on NAPL removal efficiency from the soil column. The main NAPL removal mechanism of swelling alcohol was mobilization, while that of non-swelling alcohol was NAPL dissolution. The NAPL removal efficiency of swelling alcohol was more effective than that of non-swelling alcohol. Removal of Benzene NAPL entrapped in the soil would be effective under the cosolvent flood condition of alcohol content greater than 40% in volume.

토양공극에 위치한 벤젠-NAPL(Non-Aqueous Phase Liquid)에 대한 cosolvent 세정기술을 연구하였다. 토양칼럼을 이용하여 cosolvent 내 알코올 특성 및 농도 변화에 따른 NAPL 제거 변화를 실험하였다. NAPL에 흡수되어 부피를 증가시키는 NAPL swelling 알코올(1-프로판올, TBA)과 Non-swelling 알코올(에탄올) 특성에 따른 NAPL 제거 효과를 평가한 결과, 에탄올 cosolvent의 NAPL 제거 메커니즘은 용해이며, swelling 알코올의 주요 NAPL 제거 메커니즘은 이동임이 확인되었다. 토양 내 NAPL 제거에 있어 용해보다는 NAPL 이동에 의한 제거가 훨씬 효과적이었다. 알코올 농도 변화 실험에서, cosolvent 내 알코올 함유량이 40% 이상 되어야 토양 내 NAPL의 이동이 현저히 증가하는 것으로 나타났다.

Keywords

References

  1. Brandes, D. and Farley, K., J., 1993, Importance of phase behavior on the removal of residual DNAPLs from porous media by alcohol flooding, Water Environment Research, 65, 869-878 https://doi.org/10.2175/WER.65.7.9
  2. Hayden, N.J. et al., 1999, Phase behavior of chlorinated solvent+water+alcohol mixtures with application to alcohol flushing, J. Chem. Eng. Data, 44, 1085-1090 https://doi.org/10.1021/je980273y
  3. Lunn, S.R.D. and Kueper, B.H., 1997, Removal of pooled dense, nonaqueous phase liquid from saturated porous media using upward gradient alcohol floods, Water Resources Research, 33(10), 2207-2219 https://doi.org/10.1029/97WR01692
  4. Ramsburg, C.A., 2003, Use of a surfactant-stabilized emulsion to deliver 1-butanol for density-modified displacement of trichloroethene, Environ. Sci. Technol., 37, 4246-4253 https://doi.org/10.1021/es0210291
  5. Ramsburg, C.A. and Pennell, K.D., 2002, Density-modified displacement for dense nonaqueous-phase liquid source-zone remediation: Density conversion using a partitioning alcohol, Environ. Sci. Technol., 36, 2082-2087 https://doi.org/10.1021/es011357l
  6. St-Pierre, C., 2004, TCE recovery mechanisms using micellar and alcohol solutions: phase diagrams and sand column experiments, Journal of contaminant hydrology, 71, 155-192 https://doi.org/10.1016/j.jconhyd.2003.09.010
  7. U.S. EPA, 2004, Treatment Technologies for Site Cleanup: annual status report, 11th edition, p. 4-8