• Title/Summary/Keyword: non Gaussian

Search Result 509, Processing Time 0.031 seconds

A Simple Tandem Method for Clustering of Multimodal Dataset

  • Cho C.;Lee J.W.;Lee J.W.
    • Proceedings of the Korean Operations and Management Science Society Conference
    • /
    • 2003.05a
    • /
    • pp.729-733
    • /
    • 2003
  • The presence of local features within clusters incurred by multi-modal nature of data prohibits many conventional clustering techniques from working properly. Especially, the clustering of datasets with non-Gaussian distributions within a cluster can be problematic when the technique with implicit assumption of Gaussian distribution is used. Current study proposes a simple tandem clustering method composed of k-means type algorithm and hierarchical method to solve such problems. The multi-modal dataset is first divided into many small pre-clusters by k-means or fuzzy k-means algorithm. The pre-clusters found from the first step are to be clustered again using agglomerative hierarchical clustering method with Kullback- Leibler divergence as the measure of dissimilarity. This method is not only effective at extracting the multi-modal clusters but also fast and easy in terms of computation complexity and relatively robust at the presence of outliers. The performance of the proposed method was evaluated on three generated datasets and six sets of publicly known real world data.

  • PDF

Estimation of Spatial Dependence by Quasi-likelihood Method (의사우도법을 이용한 공간 종속 모형의 추정)

  • 이윤동;최혜미
    • The Korean Journal of Applied Statistics
    • /
    • v.17 no.3
    • /
    • pp.519-533
    • /
    • 2004
  • In this paper, we suggest quasi-likelihood estimation (QLE) method and its robust version in estimating spatial dependence modelled through variogram used for spatial data modelling. We compare the statistical characteristics of the estimators with other popular least squares estimators of parameters for variogram model by simulation study. The QLE method for estimating spatial dependence has the advantages that it does not need the concept of lags commonly required for least squares estimation methods as well as its statistical superiority. The QLE method also shows the statistical superiority to the other methods for the tested Gaussian and non-Gaussian spatial processes.

An Edge Detection Algorithm using Modified Mask in AWGN Environment (AWGN 환경에서 변형된 마스크를 이용한 에지 검출 알고리즘)

  • Lee, Chang-Young;Kim, Nam-Ho
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.05a
    • /
    • pp.892-894
    • /
    • 2013
  • Edge has been utilized in various application fields with development of technique of digital image processing. In conventional edge detection methods, there are some methods using mask including Sobel, Prewitt, Roberts and Laplacian operator. Those methods are that implement is simple but generates errors of edge detection in images added AWGN(additive white Gaussian noise). Therefore, to compensate the defect of those methods, in this paper, an edge detection algorithm using modified mask is proposed, and it showed superior edge detection property in AWGN.

  • PDF

Derivation of Union Upper Bound on BER of BICM System Employing Non-Gaussian Decoding Metric for Downlink CellularOFDMA Networks (직교 주파수 분할 다중 접속 방식을 사용하는 하향 링크 셀룰러 시스템의 비가우시안 복호 성능에 대한 상계 유도)

  • Son, Jae-Yong;Cheun, Kyung-Whoon
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.37 no.7A
    • /
    • pp.522-527
    • /
    • 2012
  • In this paper, union upper bound on convolutional coded bit error rates (BER) is derived for downlink orthogonal frequency division multiple access (OFDMA) networks. According to the numerical results, for the small network loads, the BER performance with Laplacian decoding metric outperforms the BER performance with Gaussian decoding metric under downlink OFDMA networks with Viterbi decoder.

Classification of Underwater Transient Signals Using Gaussian Mixture Model (정규혼합모델을 이용한 수중 천이신호 식별)

  • Oh, Sang-Hwan;Bae, Keun-Sung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.9
    • /
    • pp.1870-1877
    • /
    • 2012
  • Transient signals generally have short duration and variable length with time-varying and non-stationary characteristics. Thus frame-based pattern matching method is useful for classification of transient signals. In this paper, we propose a new method for classification of underwater transient signals using a Gaussian mixture model(GMM). We carried out classification experiments for various underwater transient signals depending upon the types of noise, signal-to-noise ratio, and number of mixtures in the GMM. Experimental results have verified that the proposed method works quite well for classification of underwater transient signals.

A Suboptimal Estimator Design for Discrete Nonlinear Systems (이산 비선형시스템에서의 준최적추정자)

  • 이연석;이장규
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.40 no.9
    • /
    • pp.929-936
    • /
    • 1991
  • An estimator for a discrete nonlinear system is derived in the sense of minimum mean square error. An optimal estimator for nonlinear system is very difficult to find and it will be infinite dimensional even if it is found. It has been known that the statistical linearization technique makes it possible to obtain a finite dimensional estimator. In this paper, the procedure of its derivation using the statistical linearization technique that gives an exact mean and variance information is introduced in the sense of minimum mean square error. The derived estimator cannot be clainmed to be globally optimal estimator because it uses the Gaussian assumption to the non-Gaussian distributed nonlinear output. However, the proposed filter exhibits a better performance compared to extended Kalman filter. Simulation results of a simple example present the improvement of the proposed filter in convergent property over the extended Kalman filter.

  • PDF

Gaussian Variance Filtering for Automatic Inspection of Gas Pipelines using Magnetic Flux Leakage Signal (가스 배관 자동 검사를 위한 자기 누설 신호의 가우시안 분산 필터링)

  • Han, Byung-Gil;Lee, Min-Ho;Cho, Sung-Ho;Rho, Young-Woo;Choi, Doo-Hyun
    • Proceedings of the IEEK Conference
    • /
    • 2006.06a
    • /
    • pp.361-362
    • /
    • 2006
  • Magnetic Flux Leakage (MFL) inspection is a general non-destructive testing (NDT) method to detect the corrosion of natural gas pipelines. Currently, it is subjectively analyzed by trained analysts. In spite of investing much time and human resources, the inspection results may be different according to the analysts' expertise. So, many gas suppliers are keenly interested in the automation of the interpretation process. This paper presents a Gaussian variance filtering method of MFL signals, which is taken from MFL pigging of underground pipelines. In the proposed algorithm the original MFL signals are filtered by multiple Gaussians with different variance. Experimental results show that this approach does not need to align bias and to use explicit noise reduction algorithm.

  • PDF

Analysis of Electromagnetic Scattering from an Arbitrarily-Shaped Conductor using Duffy한s Method (Duffy 방법을 이용한 임의 형상 도체의 전자파 산란 해석)

  • 이승학;김채영;이창원
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.8
    • /
    • pp.834-842
    • /
    • 2002
  • The method of moment is applied to the analysis of electromagnetic scattering from an arbitrarily-shaped conductor. The conducting surface is discretized into triangular patches using a GID tool. Surface currents on a conductor are expanded with a vector triangle basis function. By using the Duffy's method, the singular integration appeared in a triangle patch can be transformed into the non-singular integral form suitable for one dimensional Gaussian quadrature integration method. Mutual and self integration extracted singular terms are evaluated by two dimensional Gaussian quadrature techniques.

An Algorithm for Bit Error Rate Monitoring and Adaptive Decision Threshold Optimization Based on Pseudo-error Counting Scheme

  • Kim, Sung-Man
    • Journal of the Optical Society of Korea
    • /
    • v.14 no.1
    • /
    • pp.22-27
    • /
    • 2010
  • Bit error rate (BER) monitoring is the ultimate goal of performance monitoring in all digital transmission systems as well as optical fiber transmission systems. To achieve this goal, optimization of the decision threshold must also be considered because BER is dependent on the level of decision threshold. In this paper, we analyze a pseudo-error counting scheme and propose an algorithm to achieve both BER monitoring and adaptive decision threshold optimization in optical fiber transmission systems. To verify the effectiveness of the proposed algorithm, we conduct computer simulations in both Gaussian and non-Gaussian distribution cases. According to the simulation results, BER and the optimum decision threshold can be estimated with the errors of < 20% and < 10 mV, respectively, within 0.1-s processing time in > 40-Gb/s transmission systems.

Dual Foot-PDR System Considering Lateral Position Error Characteristics

  • Lee, Jae Hong;Cho, Seong Yun;Park, Chan Gook
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.1
    • /
    • pp.35-44
    • /
    • 2022
  • In this paper, a dual foot (DF)-PDR system is proposed for the fusion of integration (IA)-based PDR systems independently applied on both shoes. The horizontal positions of the two shoes estimated from each PDR system are fused based on a particle filter. The proposed method bounds the position error even if the walking time increases without an additional sensor. The distribution of particles is a non-Gaussian distribution to express the lateral error due to systematic drift. Assuming that the shoe position is the pedestrian position, the multi-modal position distribution can be fused into one using the Gaussian sum. The fused pedestrian position is used as a measurement of each particle filter so that the position error is corrected. As a result, experimental results show that position of pedestrians can be effectively estimated by using only the inertial sensors attached to both shoes.