• Title/Summary/Keyword: noise variance

Search Result 475, Processing Time 0.022 seconds

INS/GPS Integration System Using Adaptive Filter with Estimating Measurement Noise Variance (측정잡음 분산추정 적응필터를 이용한 INS/GPS 결합 시스템)

  • Yu, Myeong-Jong
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.13 no.7
    • /
    • pp.688-693
    • /
    • 2007
  • The INS/GPS integration system is designed by employing an adaptive filter that can estimate the measurement noise variance using the residual of the filter. To verify the efficiency of the proposed loosely-coupled INS/GPS integration system, simulation is performed by assuming that GPS information has large position errors. Simulation results show that the proposed integration system with the adaptive filter is more effective in estimating the position and attitude errors than those with the Extended Kalman Filter.

Design of Robust Detector with Noise Variance Estimation Censoring Input Signals over AWGN

  • Lee, Hyeon-Cheol;Halverson, Don R.
    • ETRI Journal
    • /
    • v.29 no.1
    • /
    • pp.110-112
    • /
    • 2007
  • As an alternative to the classic linear detector which only assumes noise variance, a new robust detector with noise variance estimation censoring input signals over AWGN is proposed. The results demonstrate that analytic detection probability matches the simulation results for the linear detector and that the new robust detector shows better performance than the linear detector when the number of samples increases.

  • PDF

Detection of Impulse Signal in Noise Using a Minimum Variance Cepstrum-Theory (최소 분산 캡스트럼을 이용한 노이즈속에 묻힌 임펄스 검출방법-이론)

  • 최영철;김양한
    • Journal of KSNVE
    • /
    • v.10 no.4
    • /
    • pp.642-647
    • /
    • 2000
  • Conventional cepstrum has been widely used to detect echo and fault signals embedded in noise. One of the problems of finding impulse signals using the conventional cepstrum in that it is normally very sensitive to signal to noise ratio (SNR). This paper proposes a signal processing method to detect impulse signal in noisy environment. Because the proposed method minimizes the variance of signal power at a cepstrum domain, it is suggested to be called as minimum variance cepstrum (MV cepstrum). Computer simulations have been performed to understand the characteristics of the MV cepstrum. Both mathematical approach and computer simulations confirmed that the MV cepstrum is a useful technique to detect impulse in noisy environment.

  • PDF

Estimation of the Noise Variance in Image and Noise Reduction (영상에 포함된 잡음의 분산 추정과 잡음제거)

  • Kim, Yeong-Hwa;Nam, Ji-Ho
    • The Korean Journal of Applied Statistics
    • /
    • v.24 no.5
    • /
    • pp.905-914
    • /
    • 2011
  • In the field of image processing, the removal noise contamination from the original image is essential. However, due to various reasons, the occurrence of the noise is practically impossible to prevent completely. Thus, the reduction of the noise contained in images remains important. In this study, we estimate the level of noise variance based on the measurement of the relative strength of the noise, and we propose a noise reduction algorithm that uses a sigma filter. As a result, the proposed statistical noise reduction methodology provides significantly improved results over the usual sigma filtering regardless of the level of the noise variance.

A Kalman Filtering Method for Estimation of Parameters of High Frequency Trans (고주파 과도신호의 파라미터 추정을 위한 칼만 필터링 기법에 관한 연구)

  • Lee, Tae-Hoon;Park, Jin-Bae;Yoon, Tae-Sung;Kho, Jae-Won
    • Proceedings of the KIEE Conference
    • /
    • 1998.07b
    • /
    • pp.620-622
    • /
    • 1998
  • This paper presents a method for estimating parameters of high frequency transient signals when noise is added. The parameters to be estimated are the magnitude, frequency, and decay rate of the signals. An approach based on only the extended Kalman filter (EKF) is highly dependent on choosing a correct value of variance of noise. The proposed method adopts an adaptive Kalman filter (AKF). Having very little information of the noise, This method avoids deterioration of the filter performance caused by choosing an inaccurate variance of the noise. The dependence of the EKF method upon the noise variance and the efficiency of the AKF method are shown.

  • PDF

The Characteristics of Signal versus Noise SST Variability in the North Pacific and the Tropical Pacific Ocean

  • Yeh, Sang-Wook;Kirtman, Ben P.
    • Ocean Science Journal
    • /
    • v.41 no.1
    • /
    • pp.1-10
    • /
    • 2006
  • Total sea surface temperature (SST) in a coupled GCM is diagnosed by separating the variability into signal variance and noise variance. The signal and the noise is calculated from multi-decadal simulations from the COLA anomaly coupled GCM and the interactive ensemble model by assuming both simulations have a similar signal variance. The interactive ensemble model is a new coupling strategy that is designed to increase signal to noise ratio by using an ensemble of atmospheric realizations coupled to a single ocean model. The procedure for separating the signal and the noise variability presented here does not rely on any ad hoc temporal or spatial filter. Based on these simulations, we find that the signal versus the noise of SST variability in the North Pacific is significantly different from that in the equatorial Pacific. The noise SST variability explains the majority of the total variability in the North Pacific, whereas the signal dominates in the deep tropics. It is also found that the spatial characteristics of the signal and the noise are also distinct in the North Pacific and equatorial Pacific.

A Spectrum Sensing Scheme with Unknown Deterministic Signal Environment (예측 가능한 신호 환경에서의 스펙트럼 센싱 기법)

  • Kim, Jeong-Hoon;Asif, Iqbal;Khuandaga, Gulmira;Kwak, Kyung-Sup
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.10 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Spectrum sensing is one of the most important technologies in cognitive radio. Although many studies have considered energy detection technique as the spectrum sensing technique, noise variance in practical systems is difficult to estimate accurately. Thus, in the real system, the probability of false alarm will not be maintained constant. In this paper, with considering that the cognitive radio does not know the primary user's signal, we propose a new spectrum sensing scheme which can operate without the information of noise variance. Through simulations, we show that the proposed scheme can detect spectrum with the condition of unknown noise information and have robustness for the change of noise variance.

Harmonics-based Spectral Subtraction and Feature Vector Normalization for Robust Speech Recognition

  • Beh, Joung-Hoon;Lee, Heung-Kyu;Kwon, Oh-Il;Ko, Han-Seok
    • Speech Sciences
    • /
    • v.11 no.1
    • /
    • pp.7-20
    • /
    • 2004
  • In this paper, we propose a two-step noise compensation algorithm in feature extraction for achieving robust speech recognition. The proposed method frees us from requiring a priori information on noisy environments and is simple to implement. First, in frequency domain, the Harmonics-based Spectral Subtraction (HSS) is applied so that it reduces the additive background noise and makes the shape of harmonics in speech spectrum more pronounced. We then apply a judiciously weighted variance Feature Vector Normalization (FVN) to compensate for both the channel distortion and additive noise. The weighted variance FVN compensates for the variance mismatch in both the speech and the non-speech regions respectively. Representative performance evaluation using Aurora 2 database shows that the proposed method yields 27.18% relative improvement in accuracy under a multi-noise training task and 57.94% relative improvement under a clean training task.

  • PDF

Adaptive Median Filter by Local Central Variance (로컬 중간값 분산을 이용한 적응형 메디안 필터)

  • Cho Woo-Yeon;Choi Doo-Il
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.2
    • /
    • pp.104-115
    • /
    • 2005
  • Median filters in the signal processing have been most widely used and have demonstrated the strongest effects. This paper proposes the adaptive median filters with noise detection. The proposed basic algorithm of the filters is to judge whether or not the noises exist on the ground of The Noise Judgment Standards. Just in case the existence of the noises is verified by the algorithm, it takes the median filter. In order to judge the existence of the noises by the algorithm, this paper introduced the noise detection method by local central variance. As a result of comparing and analyzing the features and performance of the proposed filters and the existing [5]-[10] filters on the same conditions, it was verified that the former proved to be better than the latter, Observed even by naked eyes, it was similar, too. Accordingly, it's proved that the adaptive median filters by local central variance are useful in removing the impulse noise of the median filter and reinforce the edge preservation ability.

Performance of Spiked Population Models for Spectrum Sensing

  • Le, Tan-Thanh;Kong, Hyung-Yun
    • Journal of electromagnetic engineering and science
    • /
    • v.12 no.3
    • /
    • pp.203-209
    • /
    • 2012
  • In order to improve sensing performance when the noise variance is not known, this paper considers a so-called blind spectrum sensing technique that is based on eigenvalue models. In this paper, we employed the spiked population models in order to identify the miss detection probability. At first, we try to estimate the unknown noise variance based on the blind measurements at a secondary location. We then investigate the performance of detection, in terms of both theoretical and empirical aspects, after applying this estimated noise variance result. In addition, we study the effects of the number of SUs and the number of samples on the spectrum sensing performance.