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Abstract 

In order to improve sensing performance when the noise variance is not known, this paper considers a so-called 
blind spectrum sensing technique that is based on eigenvalue models. In this paper, we employed the spiked population 

models in order to identify the miss detection probability. At first, we try to estimate the unknown noise variance 
based on the blind measurements at a secondary location. We then investigate the performance of detection, in terms 

of both theoretical and empirical aspects, after applying this estimated noise variance result. In addition, we study the 
effects of the number of SUs and the number of samples on the spectrum sensing performance.
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Ⅰ. Introduction

Much recent work has focused on eigenvalue-based 

spectrum sensing methods for cognitive radio networks 

(CRNs) [1], [2], where researchers have applied inno-

vations from random matrix theory to calculate the pro-

bability of a false alarm as a function of a threshold. 

This work has also employed many kinds of test sta-

tistics, such as the ratio of the largest and the smallest 

eigenvalues or the ratio of the average and the smallest 

eigenvalues of the sample covariance matrix. Yonghong 

and Ying-chang’s model in [2] requires a number of 

samples, N, and a number of secondary users (SUs), K, 

approaching infinity. A significant gap exists between 

the simulations and analytical results. 

Kortun et al. [1] improved the model by finding an 

exact threshold and an approximate closed-form per-

formance that agreed well with the empirical results. 

Independently, Penna et al. [7] derived work similar to 

[1] and then further analyzed the probability of a miss 

in [10]. However, the method used in [10] still requires 

knowledge of noise level and the parameters of primary 

user (PU) signals and channels, which is impractical in 

CRN scenarios. To our knowledge, not much research 

has been carried out regarding the relationship between 

the threshold and the probability of a miss when using 

blind spectrum sensing techniques.

This paper considers a novel blind spectrum sensing 

technique for CRNs, where we analyze a threshold with 

a constraint on the probability of a miss. CRNs are com-

posed of a specific bandwidth, including multiple PUs 

and the number of SUs. Based on a variety of research 

related to the distribution of eigenvalues [3], [4], we ap-

ply the results of random matrix theory to the spectrum 

sensing model. In fact, the practical model is related to 

a finite number of samples and SUs, while these para- 

meters are infinite in random matrix theory. Therefore, 

we exploit the limit distribution for approximate results 

in our applied spectrum sensing model. Furthermore, the 

observations referred to in this spectrum sensing model 

undergo interference with by complex Gaussian noise and 

are affected by fading channels. Performance still de-

pends on the channel parameters, noise powers, and the 

PU signal powers. However, these parameters are un-

known in practice. Therefore, noise estimation schemes 

must be combined with analytical approaches. This work 

also focuses on improving the performance of the noise 

estimation scheme in order to provide an efficient sol-

ution to the problem with unknown information.

The rest of this paper is organized as follows. Section 

2 presents the sensing model. The analysis of the proba-

bility of a miss as a function of threshold is considered 

in Section 3. Section 4 demonstrates simulation results 

and discussions. Finally, concluding remarks are given 
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in Section 5.

Ⅱ. System Model

The system model can be presented with some assum-

ptions. At the PU side, there are P sub-bands of interest 

transmitted by P entities. Cognitive radio networks have 

K SUs, which can share their information through high 

speed transmissions. The high speed requirement for ex-

change of data is the problem of interest in the model 

design. Fortunately, these cognitive radio nodes can be 

linked by wired networks, which help to significantly 

improve the speed.

The observable signals at the SUs can be expressed 

as
 

Y HX V,= + (1)
 

where the K×N matrix Y is the measurement at the SUs. 

The K×P matrix H represents the channels between the 

PUs and SUs. The P×N matrix X denotes the trans-

mitted signals from the PUs. In fact, the transmitted sig-

nals can be expressed as X=[x(n)]T, n=1, …, N, where 

each x(n) is the P´1 vector whose elements are obtained 

from samples of PU signals.  Therefore, the  covarian-  

ce matrix of these independent PUs can be written as 

{ } 2 2
1E xx   C  diag( ,..., )H

x Ps s= = , where 2 ,is  [ ]1,i PÎ  is 

the variance of the i-th PU signal. The K×N matrix V 

is the complex Gaussian noise with zero mean and var-

iances .

The hypotheses can be expressed as
 

00 :ٛ Y | V,=HH (2)
  

11 :ٛ Y | HX V,= +HH (3)

Ⅲ. Performance Analysis

3-1 Probability of Miss Analysis

In the case of 1ٛH , the measurements at the SUs are 

rewritten as
 

   









 





















 

(4)
 

where the covariance matrix of the PU signals are Cx

{ } ( )H 2 2
1 Pxx diag σ , ,σ ,Cx E = ¼= 1/21

J HC I
σ

x K

é ù
= ê ú
ë û

, 
1/2σC X

R
V
x
-é ù

= ê ú
ë û

. 

The test statistic can be found by calculating the ei-

genvalues 2

1
JJ HC H I

σ

H
x

H
K= +  as follows:

( )( )
( )

( )( )

( )

H

2

2 ( )

~ ~
2 ( )

K

det JJ I 0,

1
det HC H I I 0,

det HC H 1 I 0,

det(HC H I ) 0, ? ,

J

K

JH
x K K

H J
x K

H J
x i

t

t

t

t t t

s

s

s

- =

æ ö
Û + - =ç ÷

è ø

Û - - =

Û - = = - (5)
 
Using the generalized matrix determinant lemma, we 

have
  

detdetdet



 

⇔det 
det




 

⇔










 ≤ ≤

det



  ≤ ≤










(6)
 

Hence,
 

~

( )

2
1.iJ

it
t

s
= +

(7)
 

It is easily observed from Eqs. (5) and (6) that the 

power of each PU and the channel information, repre-

sented by Cx and H, respectively, must be known. We 

first consider the case of known channel state infor-

mation and unknown PU signal powers. The noise vari-

ances must be estimated, and then we can separate into 

two groups of noises or signals with variances equal to 

or larger than the estimated one. This technique will be 

presented and analyzed in Subsection 3.1. Furthermore, 

SUs do not know channel state information in practice; 

hence, we approximate ( )J
it  for a fully blind spectrum sen-

sing model in the Simulation section.

3-2 Methods for Noise Estimation

In Subsection 3.2, the final expression of miss proba-

bility requires knowledge of the sampled covariance ma-

trix of PU signals, the channel matrix, and the noise 

level. In order to obtain these values, we must estimate 

the number of PUs and the noise power. Based on pre-

vious research [8], we present and analyze the perfor- 

mance of noise estimation, as follows.

The distribution of the largest eigenvalue 1l  is
 

( )
2

2
1

,ٛ

( , )
lim Pr

/
,

( , )
W

N p

N p
x F x

N p

l s m

s®¥

ì ü-
< =í ý

î þ (8)
 

where
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( , ) ( 1 / 2 1 / 2) ,N p p

N
Nm = - + -

1/3

1 1 1
( , ) ( 1 / 2 1 / 2)

1/ 2 1 / 2
,N p N p

N N p
s

æ ö
= - + - +ç ÷ç ÷- -è ø

and ( )
2WF x is the Tracy-Widom distribution with order 

2 ( 2W ) [9].

In order to determine the total number of active Pus, 
^

P , we apply a series of tests. In other words, we will 

estimate the noise level of the communication environ-

ment at the p-th eigenvalue, and then test the likelihood 

of this p-th eigenvalue, pl , to determine whether it has 

arisen from PU signals or noises. In each test, there are 

two hypotheses, 0H   and 1ٛH , where the former represents 

at least p eigenvalues satisfying (9). The latter repre-

sents, at most, (p—1) eigenvalues not satisfying the con-

dition in (9), due to the fact that the p-th eigenvalue is 

used as the edges of the two hypotheses, the eigenvalues 

il , [ ]1,i p KÎ +  are assumed to be arisen from noises.

0H  has at least p eigenvalues satisfying (9). 

0H  has at most (p-1) eigenvalues not satisfying (9).

The condition used for testing is
 

( ) ( ) ( ) ( )( )2 , , ,p PN p N K p x b N K pl s m s> - + - (9)
 

where ( )
2Wb F x= is the confidence level, and ( )

2

1
Wx b F b-=

( )
2

1
Wx b F b-

 is the value determined from inverting the second- 

order Tracy Widom distribution. In our work, b is va- 

ried from 0.1 % to 0.5 %.

The operation can be implemented as described be-

low. If the measurements satisfy hypothesis 0H , we in-

crease p and perform the test again. Otherwise, when 

the hypothesis 1H  is satisfied, we stop testing and record 

the final result 
^

1P p= - . Based on the above operation, 
^

P  can be defined as the solution to the following opti-

mization problem
 

( ) ( ) ( )( )

2 ( )
arg min -1.

, - , -

p P N

p

p
P

N K p x b N K p

l s

m s

ì ü´ï ï
= í ý

£

+ï ïî þ

$

(10)
 

For Eq. (10), the noise level must be known. There-

fore, we next present the method to estimate 2
P Ns .

3-2-1 A Simple Method for Noise Estimation

Equation (1) can be rewritten as
 

1

y h x ,
P

j j

j

sx
=

= +å
(11)

The covariance matrix can be modified to a diagonal 

matrix as
 





 





 (12)

 

where U is now an unknown K×K matrix whose col-

umns are the eigenvectors of C y , 
..

1

11

2

λ

λ

.A

é ù
ê

´
ú

= ê
ê
ë û´

ú
ú

, and 

( )22A 0 K P= - . It is clear that, with a very large num-

ber of samples ( N ®¥ ), the first P eigenvalues of the 

covariance matrix are  2
il s+ , i=1, …, P, and the re-

maining (K—P) eigenvalues are 2s . The eigenvalues are 

separated into two groups, the group of signals with es-

timated eigenvalues larger than ^
2s  and the group of 

noises with the remaining eigenvalues. Unfortunately, 

the noise eigenvalues are widely spread in the case of 

a finite number of samples. In this setting, we define the 

covariance matrix for a finite number of samples and 

observe that
 

1

C y y .
N

H
yN j j

j=

=å
(13)

 

In practice, the sampled covariance matrix can be 

written as
 

1τ 0

U C U

τ 0

T
yN

K

´ ´æ ö æ ö
ç ÷ ç ÷

= +ç ÷ ç ÷
ç ÷ ç ÷´ ´è ø è ø

O O

(14)
 

where   







. It is easily seen that the diagonal 

elements from (P+1) to K are due to noise. By avera- 

ging these elements, we derive the noise variance as
 

2

1 1 1

1 1

1 1

1
( )

K K P

i i i
i P i i

K P

i i i
i P i

K P K P

K P

s t l t

l l t

= + = =

= + =

æ ö
= = -ç ÷

- - è ø

æ ö
= + -ç ÷

- è ø

å å å

å å
(15)

 

However, the matrix U is unknown. Hence, we must 

estimate it . In the simple form, we set i it l=  and get
 

^
2
simple

1

1
.

K

i

i PK P
s l

= +

æ ö
= ç ÷

- è ø
å

(16)

 

3-2-2 Improvement in Noise Estimation

In order to improve the estimated noise variance, we 

now diagonalize the upper left submatrix 1 N 1U C UT
y , as 



,

JOURNAL OF ELECTROMAGNETIC ENGINEERING AND SCIENCE, VOL. 12, NO. 3, SEP. 2012

206

in [8]
 

11 12

1 1

21 22
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U C U ,

B B
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æ ö
= ç ÷
è ø (17)

 

where 
1

0

0

P

f

f

æ ö
ç ÷
ç ÷
ç ÷
è ø

O , 12 21B BT Z= = and 
1

22

0

0

B
P

K

t

t

+æ ö
ç ÷

= ç ÷
ç ÷
è ø

O . 

The eigenvalues of 1 N 1U C UT
y  are

 

≈ 
 








 ∈  
(18)

 

where { }2 2 21
ij ij jz E z

N
f s» = . Therefore, Eq. (18) can be 

derived as
 

2 2

2 2
1

1
,

K
j j

j j j
i P j j

K P

N N

f f
l f s f s

f s f s= +

-
» + = +

- -
å

(19)
 

where [ ]1,j PÎ . To this end, we iterate Eqs. (15) and 

(19) to estimate the noise variance 
 

^
2

1 1

^ ^ ^ ^
2 2 2

i

1
( )

,

λ 1 0

K P

iim i i
i P i

i i im i im

K P

K P

N

s l l f

f f s l s

= + =

ì æ ö
= + -ï ç ÷

- è øï
í

æ - öæ öï - + - + =ç ÷ç ÷ï è øè øî

å å
$

(20)
 

with the initial value 
^ ^

2 2
0 simple / 1

P

N
s s

æ ö
= -ç ÷

è ø
 for better per-

formance [5].

After estimating 
^

2

ims , which is used for missed prob-

ability analysis with known channel state information 
and PU signal powers, we also use ∈  to calcu-

late the eigenvalue ( )J

it  as in Section 4 for the case of 

blind spectrum sensing models.

3-3 The Probability of Miss

Based on the estimated result of noise variance, 
^

2

ims , 

we perform the calculation of Pm. Note that the follow-

ing expressions use 2s instead of 
^

2

ims
. 

From [6], we 

have the following theorem with 
 

( )( ) 2 ( )
1 1 ( )

1

1 ,
1

J J

J

c
t t

t
m s

æ ö
= +ç ÷

-è ø (21)
  

( )
( )

( ) 2 ( )
1 1 2( )

1

1 ,
1

J J

J

c
t t

t
s s= -

-
(22)

 

where c=K/N. 

3-3-1 Theorem 1  

Ref. [3] Consider the sequence of a complex Wishart 

matrix with Cx. Let 1 m P£ £ , we have the case of iden-

tifiable signals; i.e., the spiked eigenvalues are above the 

critical limit 1/21 c+ . If  
  …  

  .  Let
 

( )
( )( )

11 1( )
1

,J

J

N
t

t
e l m

s

æ ö
= -ç ÷

è ø

$

(23)
 

then
 

( ) ( )1
,
lim Pr ,m

N P
e g g

¥
£ = G

™ (24)
 

where ( )m gG  is the finite Gaussian unitary ensemble 

(GUE) distribution given as
 

  











×


∞



⋯
∞




≤ ≺≤







exp
 ⋯ (25)

 

Based on Eq. (24), the distribution of the largest ei-

genvalue is lim
→∞

   .

 In order to determine the distribution of the smallest 

eigenvalues, which are the remaining (K-P) eigenvalues, 

we adhere to Theorem 2 [4]. Let
 

~

,
K P

c
N

-
=

(26)
  

~ ~
1/2

2

2 1 ,c cm sæ ö æ ö
= -ç ÷ ç ÷

è ø è ø (27)
  

~ ~ ~
1/2

1/

1/2

3

2 1 1 ,c c cs s -æ ö æ öæ ö
= - -ç ÷ ç ÷ç ÷

è ø è øè ø (28)
 

                        

3-3-2 Theorem 2 

Consider the sequence of a complex Wishart matrix 
~

C x  with size (K − P)×(K − P) (Note that 
~

C x is the 

lower right submatrix of C x ). Kl  is the smallest ei-

genvalue of 
~

C x .
  

The variable 

2/3 ^ ~

~
KK

N
c

c

e l m

s

æ öæ ö= - ç ÷ç ÷
æ ö è øè ø
ç ÷
è ø

 will be 

satisfied  
 

( )
2,( )

lim Pr( ) .K W
N K P

Fe g g
- ¥

£ =
™ (29)

 

Based on Eq. (29), the distribution of the smallest ei-

genvalue is 2,
lim ( ) ( )K W

N P
f x F xe

®¥
= .

Now we can establish the ratio test as follows,
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( )1/2 ( )
1 1 1

2

^

/

1

^ ~
3

~

( ) ( )
.

JJ

K K

N t t
T

c cN

sl

l

e m

e s m

-

-

+
= =

æ ö æ ö
+ç ÷ ç ÷

è ø è ø (30)
 

Following [7], the joint distribution of the largest and 

smallest eigenvalues is
 

( ) ( ) ( )
1 1|

0

,
KT Hf t xf tx f x dxl l

¥

= ò
(31)

 

where the distributions of the largest and smallest ei-

genvalues are derived from ( )
1

f xe and ( )
K

f xe , respecti-

vely, and are given as
 

( )
( )( )

( )( )
1

1/21/2
( )

( )
,

( ) m

J
GJ J

N N
f x f x t

t t
l m

s s

æ ö
ç ÷= -
ç ÷
è ø (32)

  

( )
2

2
2/3 3 ~

~ ~

|

.

|
K w

N N
c

c

f x f x

c
l m

s s

æ ö
ç ÷

æ öæ öç ÷= - ç ÷ç ÷ç ÷æ ö è øæ ö è ø
ç ÷ ç ÷ç ÷
è ø è øè ø (33)

 

Therefore, the probability of a miss can be calculated 

as
 

( )
11 |Pr | ( )m T HP T H Fg g= < = (34)

 

and the threshold is the inversion of Eq. (34)
 

( ) ( )
1

-1
| .m T H mP F Pg = (35)

 

It is easily observed that the threshold derived from 
Eq. (35) depends on the channel matrix and the PU sig-

nal powers. This is due to the fact that 1| ( )T HF g , which 

includes H and Cx. Information on the PU signal powers 
is included in Subsection 3.1, and the model considered 
here is a CSI case. In the next section, we approximate 
( )
1

Jt  in order to obtain the results in the case of the fully 

blind spectrum sensing model.

Ⅳ. Simulation Results and Discussions

After noise estimation, the results are the noise level 
2
P Ns  and the number of PU signals, Pest, with the proba-

bility of the correct number of PU signals Pr(Pest=P). 
The covariance matrix of the measurements at K of the 
SUs can then be diagonalized as in Eq. (14) and the 

first P eigenvalues [ ]
^

, 1,i i Pl Î  represented as P PU sig-

nal powers are approximated as Eq. (19). Substituting 
these eigenvalues to Eq. (7) at i=1, we have 

 


 


≈







(36)

Proof: When N is very large, the approximation is as 

follows:
 

HC H ,H
yN x vC C» + (37)

 

where Cv is the sampled covariance matrix of noise. 

From [11], Weyl’s inequality theorem reads as
 

( )
~ ^ ~

max 1 1 maxC (C ),p v vt tl l l+ £ £ + (38)
 

where ( )max Cvl  is the estimated noise eigenvalue, 
2
P Ns , 

which is calculated as in Subsection 3.1, 
~ ~ ~

1 2, , ..., Pt t t are P 

eigenvalues of HC H H
x , and 

^

1l  is the largest eigenvalue 

of C yN . Moreover, at very large N, the simulation shows 

that the following approximation performs in a manner 

that is in good agreement with the empirical results
 

( )
^

2
1 max

~ ~

1 1λ Cv P Nt tl s» + = + (39)
 

Substituting Eq. (39) into Eq. (36), we have the final 

result.

We now perform spectrum sensing without using any 

information from the channels or the noise level, in this 

case. We note that noise estimation relates to the correct 

number of PUs Pr(Pest=P), so the final probability of a 

miss is ( )
^

est   Pr   .mP Pm P P= ´ =

Now, we analyze the effects of parameters such as K, 

N, and P on the noise estimation performance and there-

fore the spectrum sensing performance. In Fig. 1, the 

miss probabilities for the unknown model, the ideal 

model (known model), and the empirical simulation are 

calculated using various numbers of samples and SUs. 

As illustrated in this figure, the gap between the ideal 

and the unknown schemes is slightly too small. In par-

ticular, when the number of SUs and samples are in-

creased ((N, K)=(2,000, 40), (N, K)=(2,000, 50) and (N, 

K)=(800, 40)), the results of both cases are the same. To 

confirm a good match between the theoretical analysis 

and the empirical experiment, the model uses only N= 

2,000 or N=800 samples, which are appropriate for the 

practical model.

In order to completely understand the estimation sche-

me, Fig. 2 shows the performance when estimating PU 

signal powers. Even though a pair of samples and the 

number of SUs (N, K) are chosen to be (1,000, 50) (i.e., 

a not very large N), the estimated power densities agree 

well with the original power densities. A larger number 

of samples gives a more exact result for the estimate of 

the powers. Hence, if we want to obtain a more precise 

estimate in order to reduce the difference between the 

theoretical and empirical results, we slightly increase the 

number of samples N.
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Fig. 1. Probability of miss vs. the threshold in the case of 
P=4 and variable K and N.

  

 

Fig. 2. Density of the ratio of signal eigenvalues to noise ei-

genvalues in the case of P=3, K =50 and N=1,000.

  

 

Fig. 3 shows the receiver operating characteristic 

(ROC), which describes the sensitivity of the spectrum 

sensing model. We also note that, in the case of H0, the 

probability of a false alarm, faP , is calculated based on 

the results in [7], which include the analysis for faP  as 

a function of a decision threshold.

Fig. 4 shows the convergence of our proposed scheme 

at P=4 with the constraint c=0.1. It is clearly observed 

that the increases in both K and N confirm the con-

vergence of the curve represented by the relation be-

tween Pm and the threshold. In the case of N=80 and 

K=8, the estimated scheme no longer agrees with the 

known scheme due to the fact that noise estimation per-

formance is heavily degraded when N is too low. 

Moreover, after the noise estimation stage, the perfor- 

mance of the spectrum sensing technique is also affected 

by very low K and N. Increases in both N and K with 

the constraint N/K=c ensure that the performance of the 

analytical unknown case matches well with that of the 

empirical known case.

Finally, we did not refer to the energy detection tech-

nique (ED) in our work; our focus was on comparison 

of our proposed method with state-of-the-art eigenvalue- 

based  approaches. Several  other studies  [1],  [2],  [7], 

Fig. 3. Probability of miss vs. probability of a false alarm 

in the case of P=1, K=50 and N =1,000.

  

 

Fig. 4. Miss probability vs. threshold in the case of P=4 and 

variable K and N with the constraint c=K/N=0.1.

  

 

[10] have confirmed that the eigenvalue-based methods 
outperform the ED.

Ⅴ. Conclusion

Our work considered a new sensing model for cogni-

tive radio networks, where multiple SUs blindly sense 

the band of interest, including multiple PUs. A novel 

analysis is presented to determine the threshold based on 

the probability of a miss, which is a new method that 

utilizes the best knowledge from spectrum sensing. Mo-

reover, the proposed hybrid analytical simulation method 

enhances the blind features of spectrum sensing models 

since the unknown noise level, and hence the parameters 

of PU signals and channels, are estimated with small 

errors. We also show the effects of the estimation sche-

me and attempt to improve its performance. As a con-

sequence, the empirical simulation results illustrate small 

differences between the performances of the ideal (kno-

wn information) and estimate (blind) models.

References 

[1] A. Kortun, T. Ratnarajah, M. Sellathurai, and C. Zhong, 

"On the performance of eigenvalue-based spectrum 

sensing for cognitive radio," in IEEE DySPAN 2010, 



LE and KONG : PERFORMANCE OF SPIKED POPULATION MODELS FOR SPECTRUM SENSING

209

Tan-Thanh Le Hyung Yun Kong

received the B.S. degree in Telecommuni-
cation Engineering from Poly-technique 
University of Hochiminh, Vietnam in 2002. 
In 2005, he got the degree of Master 
from Poly-technique University of Hochi-
minh, Vietnam in major of Electrical and 
Electronics Engineering. Since 2009, he 
has been studying Ph.D. program at Uni-

versity of Ulsan, Korea. His major research area is Cognitive 
Radio Network, Cooperative Communication.

received the M.E. and Ph.D. degrees in 
electrical engineering from Polytechnic 
University, Brooklyn, New York, USA, in 
1991 and 1996, respectively, He received 
a BE in electrical engineering from New 
York Institute of Technology, New York, 
in  1989. Since 1996, he has been with 
LG Electronics Co., Ltd., in the multi-

media research lab developing PCS mobile phone systems, 
and from 1997 the LG chairman's office planning future satel-
lite communication systems. Currently he is a Professor in 
electrical engineering at the University of Ulsan, Korea. His 
research area includes channel coding, detection and estima-
tion, cooperative communications, cognitive radio and sensor 
networks. He is a member of IEEK, KICS, KIPS, IEEE, and 
IEICE.

2010.

[2] Z. Yonghong, L. Ying-chang, "Eigenvalue-based spec-

trum sensing algorithms for cognitive radio," IEEE 

Transactions on Communications, vol. 57, no. 6, pp. 

1784-1793, 2009.

[3] S. Peche, "Universality results for the largest eigen-

values of some sample covariance matrix ensem-

bles," Probability Theory and Related Fields, vol. 

143, no. 3, pp. 481-516, 2009.

[4] O. Feldheim, S. Sodin, "A universality result for the 

smallest eigenvalues of certain sample covariance ma-

trices," Geometric and Functional Analysis, vol. 20, 

no. 1, pp. 88-123, 2010.

[5] N. M. Faber, L. M. C. Buydens, and G. Kateman, 

"Aspects of pseudorank estimation methods based on 

the eigenvalues of principal component analysis of 

random matrices," Chemometrics and Intelligent La-

boratory Systems, vol. 25, no. 2, pp. 203-226, 1994.

[6] D. Feral, S. Peche, "The largest eigenvalues of sam-

ple covariance matrices for a spiked population: Dia-

gonal case," Journal of Mathematical Physics, vol. 

50, no. 7, pp. 073302-073333, 2009.

[7] F. Penna, R. Garello, and M. A. Spirito, "Cooperati-

ve spectrum sensing based on the limiting eigenval-

ue ratio distribution in Wishart matrices," IEEE Co-

mmunications Letters, vol. 13, no. 7, pp. 507-509, 

2009.

[8] S. Kritchman, B. Nadler, "Non-parametric detection 

of the number of signals: Hypothesis testing and 

random matrix theory," IEEE Transactions on Sig-

nal Processing, vol. 57, no. 10, pp. 3930-3941, 

2009.

[9] I. M. Johnstone, "On the distribution of the largest 

eigenvalue in principal components analysis," An-

nals of Statistics, vol. 29, 2001.

[10] F. Penna, R. Garello, "Theoretical performance ana-

lysis of eigenvalue-based detection," in Preprint, 2009.

[11] R. Bhatia, Matrix Analysis, Springer, 1997.


