• Title/Summary/Keyword: node lifetime

Search Result 375, Processing Time 0.028 seconds

Minimizing Energy Consumption of Sensor Networks with Energy Balance Ratio and Relay Node Placement (에너지 균형비와 중계노드 위치를 함께 고려한 센서 네트워크의 에너지 소비 최소화)

  • Sohn, Surg-Won;Han, Kwang-Rok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.10 no.7
    • /
    • pp.1549-1555
    • /
    • 2009
  • The Relay node placement problem is one of the most important requirements for many wireless sensor networks because the lifetime of sensor networks is closely related with the placement of relay nodes which receive sensed data from sensor nodes and forward them to the base station. Relay node placement problem has focused at minimization of dissipated total energy of the sensor nodes in whole networks. However, minimum total energy causes the unbalance of consumed energy in sensor nodes due to different distances between relay nodes and sensor nodes. This paper proposes the concept of energy balance ratio and finds the locations of relay nodes using objective functions which maximize the energy balance ratio. Maximizing this ratio results in maximizing the network lifetime by minimizing the energy consumption of large-scale sensor networks. However, finding a solution to relay node placement problem is NP-hard and it is very difficult to get exact solutions. Therefore, we get approximate solutions to EBR-RNP problem which considers both energy balance ratio and relay node placement using constraint programming.

Energy Efficient Routing for Satisfying Target Lifetime in Wireless Sensor Networks (무선 센서 네트워크의 목표 수명을 만족시키기 위한 에너지 효율적 라우팅)

  • Lee, Keon-Taek;Park, Sun-Ju;Kim, Hak-Jin;Han, Seung-Jae
    • Journal of KIISE:Information Networking
    • /
    • v.36 no.6
    • /
    • pp.505-513
    • /
    • 2009
  • In some wireless sensor networks, each wireless sensor network has its own target lifetime (desired lifetime after deployment). However, satisfying the target lifetime is not a trivial problem since the nodes in wireless sensor networks often rely on batteries as their power source. In this paper, we propose an energy efficient routing algorithm that satisfies the target-lifetime requirement of a wireless sensor network. The proposed routing algorithm not only finds energy efficient paths but also optimizes the sensing rate of each sensor node. Through simulation, we compare the performance of the proposed scheme with several other existing algorithms.

An Energy Efficient Routing Protocol for Unicast in Wireless Sensor Networks (무선 센서 네트워크에서 유니캐스트를 위한 에너지 효율적인 라우팅 프로토콜)

  • Han, Uk-Pyo;Lee, Hee-Choon;Chung, Young-Jun
    • Journal of KIISE:Information Networking
    • /
    • v.34 no.4
    • /
    • pp.262-268
    • /
    • 2007
  • The efficient node-energy utilization in wireless sensor networks has been studied because sensor nodes operate with limited power based on battery. To extend the lifetime of the wireless sensor networks, maintaining balanced power consumption between sensor nodes is more important than reducing total energy consumption of the overall network. Since a large number of sensor nodes are densely deployed and collect data by cooperation in wireless sensor network, keeping more sensor nodes alive as possible is important to extend the lifetime of the sensor network. In this paper, we submit an efficient energy aware routing protocol based on AODV ad hoc routing protocol for wireless sensor networks to increase its lifetime without degrading network performance. The proposed protocol is designed to avoid traffic congestion on minor specific nodes at data transfer and to make the node power consumption be widely distributed to increase the lifetime of the network. The performance of the proposed protocol has been examined and evaluated with the NS-2 simulator in terms of network lifetime and end-to-end delay.

Performance Evaluation of the AODV-Based Extended Network Lifetime Protocol Using the Energy Mean Value over MANET (MANET환경에서 AODV 기반 에너지 평균값을 적용한 네트워크 수명연장 프로토콜의 성능평가)

  • Kim Jin-Man;Jang Jong-Wook
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.6
    • /
    • pp.1189-1194
    • /
    • 2005
  • An Ad-hoc network which do not use wired and base station system is composed the group of mobile and wireless nodes. That is various type of restriction. The biggest restriction is depend on the confined energy of battery. The network is devide more than two, if one of nodes consumed all energy that node can no longer participate to network. In recent years, the many number of studies research not only energy saving but also the networks lifetime extension which is to solve this problem. In this paper, we examine a AODV routing protocol which is modified to improve networks lifetime in mobile ad-hoc network. The one of improvement for AODV protocol is maximize the networks lifetime as apply Energy Mean Value algorithm which considerate node energy. We show the effectiveness for modified AODV(New-AODV) compared with AODV using NS-2(Network Simulator 2) the various performance metrics.

Design and Performance Evaluation of Maximum Remaining Energy Constrained Directed Diffusion Routing Algorithm for Wireless Sensor Networks (센서 네트워크를 위한 최대 잔류 에너지 제한 Directed Diffusion 라우팅 알고리즘의 설계 및 성능 분석)

  • Hwang, An-Kyu;Lee, Jae-Yong;Kim, Byung-Chul
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.30 no.11A
    • /
    • pp.995-1003
    • /
    • 2005
  • Since the sensor network nodes have a small size and limited battery power, there have been many studies for reducing their energy consumption. Each sensor node can show different energy usage according to the frequency of event sensing and data transmission, and thus they have different lifetime. So, some nodes may run out of energy that causes disconnection of paths and reduction of network lifetime. In this paper, we propose a new energy-efficient routing algorithm for sensor networks that selects a least energy-consuming path among the paths formed by node with highest remaining energy and provides long network lifetime and somewhat uniform energy consumption by nodes. Simulation results show that our algorithm extends the network lifetime and enhances the network reliability by maintaining relatively uniform remaining energy distribution among sensor nodes.

A Geographic Routing Algorithm to Prolong the Lifetime of MANET (MANET에서의 네트워크 수명을 연장시키는 위치기반 라우팅 기법)

  • Lee, Ju-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.119-125
    • /
    • 2010
  • In ad-hoc networks, dynamically reconfigurable and temporary wireless networks, all mobile devices cooperatively maintain network connectivity with no assistance of base stations while they have limited amounts of energy that is used in different rates depending on the power level. Since every node has to perform the functions of a router, if some nodes die early due to lack of energy, it will not be possible for other nodes to communicate with each other and network lifetime will be shortened. Consequently, it is very important to develop a technique to efficiently consume the limited amounts of energy resources so that the network lifetime is maximized. In this paper, geographical localized routing is proposed to help making smarter routing decision using only local information and reduce the routing overhead. The proposed localized routing algorithm selects energy-aware neighbors considering the transmission energy and error rate over the wireless link, and the residual energy of the node, which enables nodes to achieve balanced energy-consumption and the network lifetime to prolong.

Study of Single Stage PFC DCM Flyback Power Supply for a LED Lamp (LED 램프를 위한 불연속 모드를 갖는 단일단 PFC 플라이백 파워서플라이의 연구)

  • La, Jae-Du
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.65 no.4
    • /
    • pp.285-291
    • /
    • 2016
  • A light-emitting diode (LED) has been increasingly applied to various industrial fields and general lightings because of its high efficiency, low power consumption, environment-friendly characteristic and long lifetime. To drive the LED lighting, a power converter with the constant output current is needed. Among many power converters, the flyback converter is chosen by many converter designers due to high power density, structural simplicity, and miniaturization. In this converter, an electrolytic capacitor is generally chosen for the stabilization of the DC voltage because of having the large capacitance and the low price. However, the disadvantages are the short expected life time and 120Hz ripple currents on the converter output node. In this paper, a single-stage dimmable PFC DCM flyback converter without the electrolytic capacitor is proposed to prolong the lifetime of the LED driver. For the long lifetime of the converter, the polyester film capacitor with the small capacitance is substituted for the electrolytic capacitor on the output node and an LC resonant filter is added to damp 120Hz ripple current. The proposed converter is verified through the simulation and the experimental works.

Comparative Analysis of Routing Protocols for Wireless Sensor Networks (무선 센서 네트워크의 라우팅 프로토콜 비교 분석)

  • Gautam, Navin;Pyun, Jae-Young
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2008.10a
    • /
    • pp.373-376
    • /
    • 2008
  • Wireless sensor networks consist of thousands of sensor nodes that have low power, low footprint and low computational capacities. So the burning issues in the design and deployment of these sensor nodes in the practical application areas include the energy conservation and network lifetime. Efficient routing schemes can help reduce the energy consumption and thus increase the network lifetime. This paper deals with the comparative analysis of popular routing protocols such as LEACH, LEACH-C, MTE, and PEGASIS. The protocols are compared by using performance me tries such as system lifetime, the time for first node death, and total system energy.

  • PDF

Dynamic Local Update-based Routing Protocol(D-LURP) in Wireless Sensor Network with Mobile Sink (모바일 싱크노드를 갖는 무선 센서 네트워크에서 동적 지역 업데이트 기반의 라우팅 프로토콜(D-LURP))

  • Chung, Jae-Hoon;Park, Sung-Han
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.46 no.3
    • /
    • pp.116-122
    • /
    • 2009
  • Mobile Wireless Sensor Network is an organized collection of sensor nodes and mobile sink nodes, in which the sensor node transmits the signal to the sink node. In real environment, there are many cases in which sinks have mobility caused by the people, the vehicle and etc. Since all nodes in the sensor networks have limited energy, many researches have been done in order to prolong the lifetime of the entire network. In this paper we propose Dynamic Local Update-based Routing Protocol(D-LURP) that prolong the lifetime of the entire network to efficiently maintain frequent location update of mobile sink static sensor nodes in Mobile WSNs. When the sink node moves out of the local broadcasting area the proposed D-LURP configures dynamically the local update area consisted of the new local broadcasting area and the previous dissemination node(DN) and find the path between the DN and the sink node, instead of processing a new discovering path like LURP. In this way the processing of broadcasting sink node's location information in the entire network will be omitted. and thus less energy will be consumpted. We compare the performances of the proposed scheme and existing Protocols.

An Energy-Efficient Ad-hoc Routing Protocol Based on DSDV (DSDV 기반의 에너지 효율적 Ad-hoc 라우팅 프로토콜)

  • Seong Jin-Kyu;Lee Won-Joo;Jeon Chang-Ho
    • Journal of KIISE:Computer Systems and Theory
    • /
    • v.33 no.9
    • /
    • pp.677-683
    • /
    • 2006
  • If a node stops functioning in an ad-hoc wireless network, routing paths involving the node will also fail, when construction of replacement routes is required. A major cause of node failure is energy exhaustion, and route replacements may in turn lead to successive node failures by making more nodes consume their energy. The result could be performance degradation of networks. Therefore it is important to ensure that nodes with limited remaining energy are not included in route construction from the beginning. In this paper we propose a new routing protocol, which takes residue energy of nodes into account in order to prevent node failures resulting from energy shortage. Our routing protocol examines the smallest value of node residue energy ($E_{m}$) from each of all possible routing paths and selects the path which has the largest value of $E_{m}$. We prove, through simulation, that our routing protocol extends the lifetime of nodes which have limited amount of energy, reducing chances of path replacement. It is also shown that our proposed protocol helps alleviate network performance degradation.