• Title/Summary/Keyword: node js

Search Result 74, Processing Time 0.023 seconds

Implementation of Responsive Web Application for Location-based Semantic Search (위치기반 시맨틱 검색을 위한 반응형 웹 애플리케이션 구현)

  • Lee, Suhyoung;Lee, Yongju
    • The Journal of Korean Institute of Information Technology
    • /
    • v.17 no.5
    • /
    • pp.1-12
    • /
    • 2019
  • Unlike existing Open APIs, Linked Data are made as a huge intelligent base to perform high-level SPARQL queries, and it is possible to create efficiently a new content by mashuping different information from various datasets. This paper implements a responsive web application for location-based semantic search. We mashup DBpedia, a kind of Linked Data, and GoogleMap API provided by Google, and provide a semantic browser function to confirm detail information regarding retrieved objects. Our system can be used in various access environments such as PC and mobile by applying responsive web design idea. The system implemented in this paper compares functional specifications with existing systems with similar functions. The comparison results show the superiority of our system in various aspects such as using semantic, linked-based browser, and mashup function.

A Study on Blockchain-Based Mass NFT Content Minting

  • Byong-Kwon Lee
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.5
    • /
    • pp.49-56
    • /
    • 2023
  • Currently, e-commerce is changing from a digital twin to a metaverse world. The metaverse world is an intermediate form between virtual and real worlds and is operated as a coin-based meta-commerce. In this meta-commerce world, blockchain-based NFT coins are used when trading items (contents). In this study, we studied how to issue a large number of NFT coins (certification) rather than issuing a single type of NFT. The research method was designed to produce content layer-based and automatically create the desired quantity using a mass NFT index and automatic generation method. In this study, a layer overlap method (background, body, etc.) was used with a Phyton-based program for mass minting. As a result, it can be used as a blockchain-based certificate that can prove a group of many people. In addition, the content created with the NFT index was registered on the NFT sales site to confirm its utilization and value.

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses (스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계)

  • Heo, Jeong-Wook;Park, Kyeong-Hun;Lee, Jae-Su;Hong, Seung-Gil;Lee, Gong-In;Baek, Jeong-Hyun
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.251-259
    • /
    • 2018
  • BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.

Twitter Issue Tracking System by Topic Modeling Techniques (토픽 모델링을 이용한 트위터 이슈 트래킹 시스템)

  • Bae, Jung-Hwan;Han, Nam-Gi;Song, Min
    • Journal of Intelligence and Information Systems
    • /
    • v.20 no.2
    • /
    • pp.109-122
    • /
    • 2014
  • People are nowadays creating a tremendous amount of data on Social Network Service (SNS). In particular, the incorporation of SNS into mobile devices has resulted in massive amounts of data generation, thereby greatly influencing society. This is an unmatched phenomenon in history, and now we live in the Age of Big Data. SNS Data is defined as a condition of Big Data where the amount of data (volume), data input and output speeds (velocity), and the variety of data types (variety) are satisfied. If someone intends to discover the trend of an issue in SNS Big Data, this information can be used as a new important source for the creation of new values because this information covers the whole of society. In this study, a Twitter Issue Tracking System (TITS) is designed and established to meet the needs of analyzing SNS Big Data. TITS extracts issues from Twitter texts and visualizes them on the web. The proposed system provides the following four functions: (1) Provide the topic keyword set that corresponds to daily ranking; (2) Visualize the daily time series graph of a topic for the duration of a month; (3) Provide the importance of a topic through a treemap based on the score system and frequency; (4) Visualize the daily time-series graph of keywords by searching the keyword; The present study analyzes the Big Data generated by SNS in real time. SNS Big Data analysis requires various natural language processing techniques, including the removal of stop words, and noun extraction for processing various unrefined forms of unstructured data. In addition, such analysis requires the latest big data technology to process rapidly a large amount of real-time data, such as the Hadoop distributed system or NoSQL, which is an alternative to relational database. We built TITS based on Hadoop to optimize the processing of big data because Hadoop is designed to scale up from single node computing to thousands of machines. Furthermore, we use MongoDB, which is classified as a NoSQL database. In addition, MongoDB is an open source platform, document-oriented database that provides high performance, high availability, and automatic scaling. Unlike existing relational database, there are no schema or tables with MongoDB, and its most important goal is that of data accessibility and data processing performance. In the Age of Big Data, the visualization of Big Data is more attractive to the Big Data community because it helps analysts to examine such data easily and clearly. Therefore, TITS uses the d3.js library as a visualization tool. This library is designed for the purpose of creating Data Driven Documents that bind document object model (DOM) and any data; the interaction between data is easy and useful for managing real-time data stream with smooth animation. In addition, TITS uses a bootstrap made of pre-configured plug-in style sheets and JavaScript libraries to build a web system. The TITS Graphical User Interface (GUI) is designed using these libraries, and it is capable of detecting issues on Twitter in an easy and intuitive manner. The proposed work demonstrates the superiority of our issue detection techniques by matching detected issues with corresponding online news articles. The contributions of the present study are threefold. First, we suggest an alternative approach to real-time big data analysis, which has become an extremely important issue. Second, we apply a topic modeling technique that is used in various research areas, including Library and Information Science (LIS). Based on this, we can confirm the utility of storytelling and time series analysis. Third, we develop a web-based system, and make the system available for the real-time discovery of topics. The present study conducted experiments with nearly 150 million tweets in Korea during March 2013.