DOI QR코드

DOI QR Code

Design of Cloud-Based Data Analysis System for Culture Medium Management in Smart Greenhouses

스마트온실 배양액 관리를 위한 클라우드 기반 데이터 분석시스템 설계

  • Heo, Jeong-Wook (Department of Agricultural Engineering, National Institue of Agricultural Science, Rural Development of Administration) ;
  • Park, Kyeong-Hun (Ginseng Research Division, National Institute of Horticultural and Herbal Science, Rural Development of Administration) ;
  • Lee, Jae-Su (Department of Agricultural Engineering, National Institue of Agricultural Science, Rural Development of Administration) ;
  • Hong, Seung-Gil (Department of Agricultural Environment, National Institue of Agricultural Science, Rural Development of Administration) ;
  • Lee, Gong-In (Department of Agricultural Engineering, National Institue of Agricultural Science, Rural Development of Administration) ;
  • Baek, Jeong-Hyun (Department of Agricultural Engineering, National Institue of Agricultural Science, Rural Development of Administration)
  • 허정욱 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 박경훈 (농촌진흥청 국립원예특작과학원 인삼특작부) ;
  • 이재수 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 홍승길 (농촌진흥청 국립농업과학원 농업환경부) ;
  • 이공인 (농촌진흥청 국립농업과학원 농업공학부) ;
  • 백정현 (농촌진흥청 국립농업과학원 농업공학부)
  • Received : 2018.10.16
  • Accepted : 2018.11.13
  • Published : 2018.12.31

Abstract

BACKGROUND: Various culture media have been used for hydroponic cultures of horticultural plants under the smart greenhouses with natural and artificial light types. Management of the culture medium for the control of medium amounts and/or necessary components absorbed by plants during the cultivation period is performed with ICT (Information and Communication Technology) and/or IoT (Internet of Things) in a smart farm system. This study was conducted to develop the cloud-based data analysis system for effective management of culture medium applying to hydroponic culture and plant growth in smart greenhouses. METHODS AND RESULTS: Conventional inorganic Yamazaki and organic media derived from agricultural byproducts such as a immature fruit, leaf, or stem were used for hydroponic culture media. Component changes of the solutions according to the growth stage were monitored and plant growth was observed. Red and green lettuce seedlings (Lactuca sativa L.) which developed 2~3 true leaves were considered as plant materials. The seedlings were hydroponically grown in the smart greenhouse with fluorescent and light-emitting diodes (LEDs) lights of $150{\mu}mol/m^2/s$ light intensity for 35 days. Growth data of the seedlings were classified and stored to develop the relational database in the virtual machine which was generated from an open stack cloud system on the base of growth parameter. Relation of the plant growth and nutrient absorption pattern of 9 inorganic components inside the media during the cultivation period was investigated. The stored data associated with component changes and growth parameters were visualized on the web through the web framework and Node JS. CONCLUSION: Time-series changes of inorganic components in the culture media were observed. The increases of the unfolded leaves or fresh weight of the seedlings were mainly dependent on the macroelements such as a $NO_3-N$, and affected by the different inorganic and organic media. Though the data analysis system was developed, actual measurement data were offered by using the user smart device, and analysis and comparison of the data were visualized graphically in time series based on the cloud database. Agricultural management in data visualization and/or plant growth can be implemented by the data analysis system under whole agricultural sites regardless of various culture environmental changes.

스마트온실에서 사용하고 있는 다양한 종류의 수경배양액 관리와 관련하여 ICT 기술을 활용한 작물생육 기반 배양액 제어시스템 개발을 위하여, 본 연구에서는 작물 생육단계별 시용배양액의 성분변화를 모니터링하고 이들 실측 데이터를 바탕으로 한 클라우드 기반 데이터 분석시스템을 설계하였다. 수집한 데이터 분석 및 시스템 구축을 위하여 인공광 스마트 온실에서 사용하는 관행의 무기 배양액, 기존 액비 및 폐기 농업부산물 유래 제조액비 등 수종의 배양액을 공시하였으며, 수경재배 작물 생육단계별 시용 배양액내 성분 변화패턴을 모니터링하였다. 발색법에 의한 흡광광도법을 활용하여 $NH_3-N$, $NO_3-N$, $NO_2-N$, $SiO_2$, $PO_4^{3-}$ 및 Cu 등 총 9종의 성분농도 변화를 산출하고 작물의 기초 생육량을 조사하였다. 각 작물의 기초 생육량 데이터는 오픈스택 클라우드 시스템에서 생성된 가상머신(Virtual machine)에 관계형 데이터베이스를 구축하여 수집 항목별로 분류 저장하였다. 저장된 작물별 배양액의 성분변화와 생육량 데이터는 노드제이에스(Node. js) 웹 프레임워크(Framework)를 통해 매주 수집된 데이터를 가시화하여 제공한다. 클라우드 기반 데이터베이스를 구축을 통하여 배양액 성분 실측치 비교와 작물 생육상황은 사용자 스마트 디바이스(Smart devices)를 활용, 작물종과 배양액 성분을 순차적 선택하고, 각 데이터의 비교 및 분석을 시계열 그래프로 실험 결과를 가시화할 수 있도록 하였다. 본 연구에서 개발한 클라우드 기반 데이터 분석시스템 스마트온실내 수경배양액 성분변화 및 재배 작물의 생육을 정기적으로 모니터링한 실측치를 기반으로 데이터베이스를 구축한 것으로 시설재배지나 인공광 스마트온실 등 다양한 농업현장에서 생육관리를 위하여 활용할 수 있다.

Keywords

References

  1. An, N. H., Jo, Y. S., Jo, J. R., Kim, Y. K., Lee, Y., Jee, H. J., Lee, S. M., Park, K. L., & Lee, B. M. (2012). The survey of actual using conditions of farm-made liquid fertilizers for cultivating environment-friendly agricultural products. Korea Journal of Organic Agriculture, 20(3), 345-356.
  2. Atole, A., Biradar, A., Asmar, A., Kothawade, N., & Sarode, S. (2017). IoT based Smart Farming System. In International Journal of Emerging Technologies and Innovative Research, 4(4), 29-31.
  3. Baek, J. H., & Lee, H. R. (2014). Design and implementation of crop-environmental control cloud systems based on growth patterns. Database Research, 30(2), 57-66.
  4. Baek, J. H., Heo, J. W., Kim, H. H., Hong, Y. S., & Lee, J. S. (2018). Research-platform design for the Korean smart greenhouse based on cloud computing, Protected Horticulture and Plant Factory, 27(1), 27-33. https://doi.org/10.12791/KSBEC.2018.27.1.27
  5. Cha, M. K., Kim, J. S., & Cho, Y. Y. (2012). Growth response of lettuce to various levels of EC and light intensity in plant factory. Journal of Bio-Environment Control, 21, 205-311.
  6. Cho, Y. Y., Choi, K. Y., Lee, Y. B., & Son, J. E. (2012). Growth characteristics of sowthistle (Ixeris dentata Nakai) under different levels of light intensity, electrical conductivity of nutrient solution, and planting density in a plant factory. Horticulture, Environment, and Biotechnology, 53(5), 368-372. https://doi.org/10.1007/s13580-012-0691-1
  7. Cometti, N. N., Martins, M. Q., Bremenkamp, C. A., & Nunes, J. A. (2011). Nitrate concentration in lettuce leaves depending on photosynthetic photon flux and nitrate concentration in the nutrient solution. Horticultura Brasileira, 29(4), 548-553. https://doi.org/10.1590/S0102-05362011000400018
  8. Gamao, V., Naumann, H. D., & Lambert, B. D. (2015). Nitrate concentration of water in hydroponic system impacts nitrogen concentration of wheatgrass roots and shoots differently. Texas Journal of Agriculture and Natural Resources, 28, 27-32.
  9. Heo, J. W., Kang, D. H., Bang, H. S., Hong, S. G., Chun, C. H., & Kang, K. K. (2012). Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Korean Journal of Horticultural Science and Technology, 30(1), 6-12. https://doi.org/10.7235/hort.2012.11118
  10. Heo, J. W., Kim, D. E., Han, K. S., & Kim, S. J. (2013). Effect of light-quality control on growth of Ledebouriella seseloides grown in plant factory of an artificial light type. Korean Journal of Environmental Agriculture, 32(3), 193-200. https://doi.org/10.5338/KJEA.2013.32.3.193
  11. Heo, J. W., Lee, J. S., Lee, G. I., & Kim, H. H. (2017). Growth of kale seedlings affected by the control of light quality and intensity under smart greenhouse conditions with artificial lights. Korean Journal of Environmental Agriculture, 36(3), 193-200. https://doi.org/10.5338/KJEA.2017.36.3.31
  12. Khattak, A. M., & Pearson, S. (2005). Light quality and temperature effects on antirrhinum growth and development. Journal of Zhejiang University Science B, 6(2), 119-124. https://doi.org/10.1631/jzus.2005.B0119
  13. Lee, S. G., Choi, C. S., Lee, J. G., Jang, Y. A., Nam, C. W. Yeo, K. H., Lee, H. J., & Um, Y,. C. (2012). Effects of different EC in nutrient solution on growth and quality of red mustard and par-choi in plant factory, Journal of Bio-Environment Control, 21(4), 322-326. https://doi.org/10.12791/KSBEC.2012.21.4.322
  14. Lee, Y. J., & Chung, J. B. (2006). Comparison of nitrate accumulation in lettuce grown under chemical fertilizer or compost applications. Korean Journal of Environmental Agriculture, 25(4), 339-345. https://doi.org/10.5338/KJEA.2006.25.4.339
  15. Liu, Y., & Bi, C. (2017). The design of greenhouse monitoring system based on ZigBee WSNs. In Computational Science and Engineering (CSE) and Embedded and Ubiquitous Computing (EUC), 2017 IEEE International Conference, 2, 430-433.
  16. Marsic, N. K. (2002). Effects of different nitrogen levels on lettuce growth and nitrate accumulation in iceberg lettuce (Lactuca sativa var. capitata L.) grown hydroponically under greenhouse conditions. Gartenbauwissenschaft, 67(4), 128-134.
  17. Morrow, R. C. (2008). LED lighting in horticulture, HortiScience, 43(7), 1947-1950. https://doi.org/10.21273/HORTSCI.43.7.1947
  18. Premuzic, Z., Bargiela, M., Garcia, A., Rendina, A., & Iorio, A. (1998). Calcium, iron, potassium, phosphorus, and vitamin C content of organic and hydroponic tomatoes. HortScience, 33(2), 255-257.
  19. Shimizu, H., Saito, Y., Nakashima, H., Miyasaka, J., & Ohdoi, K. (2011). Light environment optimization for lettuce growth in plant factory. IFAC Proceedings Volumes, 44(1), 605-609. https://doi.org/10.3182/20110828-6-IT-1002.02683
  20. Sundmaeker, H., Verdouw, C., Wolfert, S., & Perez Freire, L. (2016). Internet of food and farm 2020. Digitising the Industry-Internet of Things connecting physical, digital and virtual worlds(eds. Vermesan, C., Friess, P.), pp. 129-151, River Publisher, Gistrup/Delft.
  21. Williams, K. A., & Nelson, J. S. (2014). Challenges of using organic fertilizers in hydroponic production systems. In XXIX International Horticultural Congress on Horticulture: Sustaining Lives, Livelihoods and Landscapes (IHC2014), 1112, 365-370. DOI:10.17660/ActaHortic.2016.1112.49.
  22. Wolfert, S., Ge, L., Verdouw, C., & Bogaardt, M. J. (2017). Big data in smart farming-a review. Agricultural Systems, 153, 69-80. https://doi.org/10.1016/j.agsy.2017.01.023
  23. Yeo, U. H., Lee, I. B., Kwon, K. S., Ha, T. H., Park, S. J., Kim, R. W., & Lee, S. Y. (2016). Analysis of research trend and core technologies based on ICT to materialized smart-farm. Protected Horticulture and Plant Factory, 25(1), 30-41. https://doi.org/10.12791/KSBEC.2016.25.1.30