• Title/Summary/Keyword: noble metal catalysts

Search Result 63, Processing Time 0.029 seconds

CO2 Reforming of Methane over Co-Pd/Al2O3 Catalysts

  • Itkulova, Sh. S.;Zhunusova, K.Z.;Zakumbaeva, G.D.
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.12
    • /
    • pp.2017-2020
    • /
    • 2005
  • The supported bimetallic Co-containing catalysts promoted by the different amount of noble metal (Pd) have been studied in the dry reforming of methane. The activity, selectivity, stability and resistance to the carbon deposition of Co-Pd/$Al_2O_3$ catalysts depend on both the catalyst composition and process conditions. It has been observed that the Co-Pd/$Al_2O_3$ catalysts produce the various oxygenates from $CO_2$ + $CH_4$ at moderate pressures.

A Effect of H2O-H2 Pretreatment on VOCs Oxidation over Noble Catalysts on Titania (티타니아에 담지된 귀금속촉매의 H2O-H2 전처리에 따른 휘발성유기화합물 산화에 미치는 영향)

  • Kim, Moon-Chan;Ko, Sun-Hwan
    • Applied Chemistry for Engineering
    • /
    • v.18 no.6
    • /
    • pp.552-556
    • /
    • 2007
  • In this study, noble metals (Pd, Ru, Ir) were supported to $TiO_2$ catalyst. In order to distribute metals uniformly, $H_2O-H_2$ pretreatment technique was used. Xylene, toluene, and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, and XPS analysis. Pd-Ru, Pd-Ir bimetallic catalysts had multipoint active sites which improved the range of Pd metal state. Bimetallic catalysts had a higher conversion of VOCs than that of monometallic one. The effect of $H_2O-H_2$ pretreatment technique was the enhancement of uniform distribution of Pd particles and promotion of catalytic efficiency. In this study, addition of Ru and Ir metals to Pd promoted oxidation conversion of VOCs. In addition, $H_2O-H_2$ pretreatment promoted removal efficiency of VOCs on the $TiO_2$ support.

Characterization of dissociation catalysts for waste plastics (폐플라스틱 분해 촉매의 특성)

  • Kim, Moon-Chan;Lee, Cheal-Gyu
    • Analytical Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.383-388
    • /
    • 2010
  • Catalytic dissociation reaction was studied in order to transform waste plastics to oil by using noble metal supported catalysts. XRD, SEM, and GC/MSD analysis were performed to find the crystalline structure and shape, and product distribution. Generally, dissociation reaction occurs at low temperature compared to pyrolysis. Dissociation reaction has advantage of gasoline yield with respect to pyrolysis which products mainly $C_1\simC_4$. The result of dissociation reaction, gasoline was obtained much as a product. $C_5\simC_{11}$ compounds were produced as a gasoline product on Pt-zeolite among noble metal catalysts at $340^{\circ}C$. The conversion of dissociation reaction of waste plastics on the prepared catalyst was above 70% over $340^{\circ}C$.

The Role of the Surface Oxide Layer on Ru Nanoparticles in Catalytic Activity of CO Oxidation

  • Kim, Sun-Mi;Qadir, Kamran;Jin, Sook-Young;Jung, Kyeong-Min;Reddy, A. Satyanarayana;Joo, Sang-Hoon;Park, Jeong-Young
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.304-304
    • /
    • 2010
  • The study on the catalytic oxidation of carbon monoxide (CO) to carbon dioxide ($CO_2$) using the noble metals has long been the interest subject and the recent progress in nanoscience provides the opportunity to develop new model systems of catalysts in this field. Of the noble metal catalysts, we selected ruthenium (Ru) as metal catalyst due to its unusual catalytic behavior. The size of colloid Ru NPs was controlled by the concentration of Ru precursor and the final reduction temperatures. For catalytic activity of CO oxidation, it was found that the trend is dependent on the size of Ru NPs. In order to explain this trend, the surface oxide layer surrounding the metal core has been suggested as the catalytically active species through several studies. In this poster, we show the influence of surface oxide on Ru NPs on the catalytic activity of CO oxidation using chemical treatments including oxidation, reduction and UV-Ozone surface treatment. The changes occurring to UV-Ozone surface treatment will be characterized with XPS and SEM. The catalytic activity before and after the chemical modification were measured. We discuss the trend of catalytic activity in light of the formation of core-shell type oxide on nanoparticles surfaces.

  • PDF

Selective Catalytic Oxidation of Ammonia over Noble Catalysts Supported on Acidic Fe-ZSM5 Supports (산성 Fe-ZSM5 담체에 담지된 귀금속 촉매를 활용한 암모니아의 선택적 산화반응)

  • Kim, Min-Sung;Lee, Dae-Won;Lee, Kwan-Young
    • Clean Technology
    • /
    • v.18 no.1
    • /
    • pp.89-94
    • /
    • 2012
  • In this study, we investigated the activity of Pd and Pt supported on acidic Fe-ZSM5 supports for selective catalytic oxidation of ammonia ($NH_3$-SCO). Among the catalysts, Pt/Fe-ZSM5 catalyst exhibited superior $NH_3$-SCO activity to Pd/Fe-ZSM5 catalyst. We also tested Pt/Fe-ZSM5 catalysts with different Fe loading using ion-exchange method to prepare Fe-ZSM5 supports, which resulted in the increased catalytic performance with smaller Fe content: $NH_3$ was oxidized completely at low temperature ($250^{\circ}C$). The physicochemical properties of Fe-ZSM5 were investigated to figure out the relationship between the characteristics of the catalysts and the catalytic activity on $NH_3$-SCO by Inductively coupled plasma-atomic emissions spectrometer (ICP-AES), $N_2$ sorption, X-ray diffraction (XRD), temperature programmed desorption of $NH_3$ ($NH_3$-TPD) technique.

Effect of promoter on platinum catalyst for oxidation of VOCs (VOCs 산화반응에서 Pt 촉매에 대한 조촉매의 영향)

  • Kim, Moon-Chan;Shin, Jin-Sil
    • Analytical Science and Technology
    • /
    • v.19 no.5
    • /
    • pp.422-432
    • /
    • 2006
  • The volatile organic compounds(VOCs) have been recognized as a major contributor to air pollution. The catalytic oxidation is one of the most important processes for VOCs destruction due to getting high efficiency at low temperature. In this study, monometallic Pt and bimetallic Pt-Ru, Pt-Ir were supported to ${\gamma}-Al_2O_3$. Xylene, toluene and MEK were used as reactants. The monometallic or bimetallic catalysts were prepared by the excess wetness impregnation method and were characterized by XRD, XPS, TEM and BET analysis. As a result, Pt-Ru, Pt-Ir bimetallic catalysts showed higher conversion than Pt monometallic catalyst. Pt-Ir bimetallic catalyst showed the highest conversion on the ${\gamma}-Al_2O_3$ support. In the VOCs oxidation, Pt-Ru, Pt-Ir bimetallic catalyst had multipoint active sites, so it improved the range of Pt metal state. Therefore, bimetallic catalysts showed higher conversion of VOCs than monometallic ones. In this study, the use of small amount of Ru, Ir to Pt promoted oxidation conversion of VOCs.

Studies on the Activity Properties of Pd-only Three-Way Catalyst for the Purification of Automobile Exhaust Emissions (자동차 배기가스 정화용 Pb-only 삼원촉매의 활성특성에 관한 연구)

  • 신병선;김상수;이길우;정명근;배재호;정석진
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.15 no.5
    • /
    • pp.667-676
    • /
    • 1999
  • The roles of ceria on three-way catalyst is to improve the noble metal dispersion and thermal stability of support ${\gamma}$-$Al_2O_3$. And, ceria has a oxygen storage capacity(OSC) under fuel rich/lean conditions to improve the operating windows of NOx, THC and CO conversion. However, ceria has weak thermal stability under high temperature due to the crystallite growth. So that, the OSC of ceria is decreased, and then the conversions of NOx, THC and CO is decreased. One way of enhancing the thermal stability and NOx, THC and CO conversion Pd-only catalyst is to improve as well as its thermal stability and oxygen storage capacity of the ceria. Especially, the appropriate mixing ratios of bulk and stabilized ceria are very important for designing principles of Pd-only three-way catalysts. In this paper, we discussed the thermal properties of stabilizedand unstabilized (bulk) ceria, and the oxygen storage capacity (OSC) of catalysts, and found the correlation between activity and the OSC of Pd-only catalysts with various different mixing ratios of bulk and stabilized ceria. Finally, we propose the design principles to improve the thermal stability of washcoated Pd-only catalysts.

  • PDF

Study of Hydrogen Evolution Reaction by Molybdenum Oxide Doped TiO2 Nanotubes (몰리브덴 산화물이 도핑된 티타늄 나노튜브전극의 수소 발생 반응 연구)

  • Oh, Kiseok;Yoo, Hyeonseok;Lee, Gibaek;Choi, Jinsub
    • Journal of the Korean institute of surface engineering
    • /
    • v.49 no.6
    • /
    • pp.521-529
    • /
    • 2016
  • In this study, titanium nanotubes, prepared by anodization method, showing high surface and strong chemical stability in acidic and basic media, have been employed for the application to the electrodes for water splitting in KOH solution. Due to its high polarization resistance of $TiO_2$ itself, proper catalysts are essentially required to reduce overpotentials for water oxidation and reduction. Most of academic literature showed noble metal catalysts for foreign dopants in $TiO_2$ electrodes. From commercialization point of view, screening of low-cost catalyst is important. Herein, we propose molybdenum oxide as low-cost catalysts among various catalysts tested in the experiments, which exhibits the highest performance for hydrogen evolution reaction in highly alkaline solution. We showed that molybdenum oxide doped electrode can be operated in extreme acidic and basic conditions as well.

Effect of Promoter with Ru and Pd on Hydrogen Production over Ni/CeO2-ZrO2 Catalyst in Steam Reforming of Methane (메탄의 수증기 개질 반응에서 Ni/CeO2-ZrO2 촉매의 수소 생산에 대한 Ru 및 Pd의 조촉매 효과)

  • In Ho Seong;Kyung Tae Cho;Jong Dae Lee
    • Applied Chemistry for Engineering
    • /
    • v.35 no.2
    • /
    • pp.134-139
    • /
    • 2024
  • In the steam reforming of methane reactions, the effect of adding noble metals Ru and Pd to a Ni-based catalyst as promoters was analyzed in terms of catalytic activity and hydrogen production. The synthesized catalysts were coated on the surface of a honeycomb-structured metal monolith to perform steam methane reforming reactions. The catalysts were characterized by XRD, TPR, and SEM, and after the reforming reaction, the gas composition was analyzed by GC to measure methane conversion, hydrogen yield, and CO selectivity. The addition of 0.5 wt% Ru improved the reduction properties of the Ni catalyst and exhibited enhanced catalytic activity with a methane conversion of 99.91%. In addition, reaction characteristics were analyzed according to various process conditions. Methane conversion of over 90% and hydrogen yield of more than 3.3 were achieved at a reaction temperature of 800 ℃, a gas hourly space velocity (GHSV) of less than 10000 h-1, and a ratio of H2O to CH4 (S/C) higher than 3.

Fabrication of Ordered One-Dimensional Silicon Structures and Radial p-n Junction Solar Cell

  • Kim, Jae-Hyun;Baek, Seong-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.86-86
    • /
    • 2012
  • The new approaches for silicon solar cell of new concept have been actively conducted. Especially, solar cells with wire array structured radial p-n junctions has attracted considerable attention due to the unique advantages of orthogonalizing the direction of light absorption and charge separation while allowing for improved light scattering and trapping. One-dimenstional semiconductor nano/micro structures should be fabricated for radial p-n junction solar cell. Most of silicon wire and/or pillar arrays have been fabricated by vapour-liquid-solid (VLS) growth because of its simple and cheap process. In the case of the VLS method has some weak points, that is, the incorporation of heavy metal catalysts into the growing silicon wire, the high temperature procedure. We have tried new approaches; one is electrochemical etching, the other is noble metal catalytic etching method to overcome those problems. In this talk, the silicon pillar formation will be characterized by investigating the parameters of the electrochemical etching process such as HF concentration ratio of electrolyte, current density, back contact material, temperature of the solution, and large pre-pattern size and pitch. In the noble metal catalytic etching processes, the effect of solution composition and thickness of metal catalyst on the etching rate and morphologies of silicon was investigated. Finally, radial p-n junction wire arrays were fabricated by spin on doping (phosphor), starting from chemical etched p-Si wire arrays. In/Ga eutectic metal was used for contact metal. The energy conversion efficiency of radial p-n junction solar cell is discussed.

  • PDF