References
- Fischer, F.; Tropsch, H. Brennct.-Chem. 1928, 9, 39
- Huang, W.; Xie, K.-C.; Wang, J.-P.; Cao, Z.-H.; Yin, L.-H.; Zhu, Q.-M. J. Catal. V 2001, 201, 100 https://doi.org/10.1006/jcat.2001.3223
- Itkulova, Sh. S.; Zhunusova, K. Z.; Zakumbaeva, G. D. Appl. Organometallic Chem. 2000, 14(12), 850 https://doi.org/10.1002/1099-0739(200012)14:12<850::AID-AOC83>3.0.CO;2-P
- Itkulova, Sh. S. NATO Science Series, II: Mathematics, Physics and Chemistry 69 (Principles and Methods for Accelerated Catalyst Design and Testing), 2002; p 407
Cited by
- Promotion of Alumina Supported Cobalt Catalysts by Iron vol.116, pp.39, 2012, https://doi.org/10.1021/jp3007206
- Syngas production by biogas reforming over the Co-based multicomponent catalysts vol.12, pp.12, 2014, https://doi.org/10.2478/s11532-014-0571-x
- Stability of Ni/SiO2-ZrO2 catalysts towards steaming and coking in the dry reforming of methane with carbon dioxide vol.10, pp.2, 2016, https://doi.org/10.1007/s11705-016-1568-0
- Greenhouse gases abatement by catalytic dry reforming of methane to syngas over samarium oxide-supported cobalt catalyst vol.14, pp.12, 2017, https://doi.org/10.1007/s13762-017-1359-2
- Greenhouse gases mitigation by CO2 reforming of methane to hydrogen-rich syngas using praseodymium oxide supported cobalt catalyst vol.19, pp.3, 2017, https://doi.org/10.1007/s10098-016-1267-z
- How do Core-Shell Structure Features Impact on the Activity/Stability of the Co-based Catalyst in Dry Reforming of Methane? vol.10, pp.13, 2018, https://doi.org/10.1002/cctc.201800327
- Trimetallic supported catalyst for renewable source of energy and environmental control through CO2 conversion vol.30, pp.6, 2005, https://doi.org/10.1080/09593330902806624