• Title/Summary/Keyword: nitrous oxide emission

Search Result 135, Processing Time 0.03 seconds

INVESTIGATION OF EMISSION RATES OF AMMONIA, NITROUS OXIDE AND OTHER EXHAUST COMPOUNDS FROM ALTERNATIVE- FUEL VEHICLES USING A CHASSIS DYNAMOMETER

  • Huai, T.;Durbin, T.-D.;Rhee, S.-H.;Norbeck, J.-M.
    • International Journal of Automotive Technology
    • /
    • v.4 no.1
    • /
    • pp.9-19
    • /
    • 2003
  • Exhaust emissions were characterized for a fleet of 10 alternative-fuel vehicles (AFVx) including 5 compressed natural gas (CNG) vehicles. 3 liquefied petroleum gas (LPG) vehicles and 2 85% methanol/15% California Phase 2 gasoline (M85) vehicles. In addition to the standard regulated emissions and detailed speciation of organic gas compounds, Fourier Transform Infrared Spectroscopy (FTIR) was used to measure ammonia (NH$_3$) and nitrous oxide ($N_2$O) emissions. NH$_3$, emissions averaged 0.124 g/mi for the vehicle fleet with a range from <0.004 to 0.540 g/mi. $N_2$O emissions averaged 0.022 g/mi over the vehicle fleet with range from <0.002 to 0.077 g/mi. Modal emissions showed that both NH$_3$, and $N_2$O emissions began during catalyst light-off and continued as the catalyst reached its operating temperature. $N_2$O emissions primarily were formed during the initial stages of catalyst light-off. Detailed speciation measurements showed that the principal component of the fuel was also the primary organic gas species found in the exhaust. In particular, methane, propane and methanol composed on average 93%, 79%, and 75% of the organic gas emissions, respectively, for the CNG, LPG. and M85 vehicles.

Catalytic Technologies for Nitric Acid Plants N2O Emissions Control: In-Duct-Dependent Technological Options (질산제조 플랜트 N2O 제거용 촉매기술: 적용위치별 기술옵션)

  • Kim, Moon-Hyeon
    • Journal of Environmental Science International
    • /
    • v.21 no.1
    • /
    • pp.113-123
    • /
    • 2012
  • A unit emission reduction of nitrous oxide ($N_2O$) from anthropogenic sources is equivalent to a 310-unit $CO_2$ emission reduction because the $N_2O$ has the global warming potential (GWP) of 310. This greatly promoted very active development and commercialization of catalysts to control $N_2O$ emissions from large-scale stationary sources, representatively nitric acid production plants, and numerous catalytic systems have been proposed for the $N_2O$ reduction to date and here designated to Options A to C with respect to in-duct-application scenarios. Whether or not these Options are suitable for $N_2O$ emissions control in nitric acid industries is primarily determined by positions of them being operated in nitric acid plants, which is mainly due to the difference in gas temperatures, compositions and pressures. The Option A being installed in the $NH_3$ oxidation reactor requires catalysts that have very strong thermal stability and high selectivity, while the Option B technologies are operated between the $NO_2$ absorption column and the gas expander and catalysts with medium thermal stability, good water tolerance and strong hydrothermal stability are applicable for this option. Catalysts for the Option C, that is positioned after the gas expander thereby having the lowest gas temperatures and pressure, should possess high de$N_2O$ performance and excellent water tolerance under such conditions. Consequently, each de$N_2O$ technology has different opportunities in nitric acid production plants and the best solution needs to be chosen considering the process requirements.

The Relationship between Korea Agricultural Productions and Greenhouse Gas Emissions Using Environmental Kuznets Curve (환경쿠즈네츠곡선을 이용한 한국의 농업 생산과 온실가스 배출의 관계 분석)

  • Kang, Hyun-Soo
    • Asia-Pacific Journal of Business
    • /
    • v.12 no.1
    • /
    • pp.209-223
    • /
    • 2021
  • Purpose - The purpose of this study was to investigate the relationship between Korea agricultural productions and Greenhouse Gas (GHG) emissions based on Environmental Kuznets Curve (EKC) hypothesis. Design/methodology/approach - This study utilized time series data of economic growth, greenhouse gas, agricultural productions, trade dependency, and energy usages. In order to econometric procedure of EKC hypothesis, this study utilized unit root test and cointegration test to check staionarity of each variable and also adopted Vector Error Correction Model (VECM) and Ordinary Least Square (OLS) to analyze the short and long run relationships. Findings - In the short run, greenhouse gas emissions resulting from economic growth show an inverse U-shape relationship, and an increase in agricultural production and energy consumption led to increase in greenhouse gas emission. In the long run, total GHG emissions and CO2 emissions show an N-shaped relationship with economic growth, and an increase in agricultural production has resulted in a decrease in total GHG and CO2 emissions. However, methane (CH4) and nitrous oxide (N2O) emissions showed an inverse U-shape relationship with economic growth, which indicated the environment and production process of agricultural production. Research implications or Originality - Korea agricultural production has different effects on the GHG emission sources, and in particular, methane (CH4) and nitrous oxide (N2O) emissions show to increase as the agricultural production expansions, so policy or technological development in related sector is required. Especially, in the context of the 2030 GHG reduction road-map, if GHG-related reduction technologies or policies are spread, national GHG emission reduction targets can be achieved and this is possible to predict the decline in production in the sector and damage to the related industries.

Characteristics of N2O Emission Factor and Measurements from Gasoline-Powered Passenger Vehicles (국내휘발유 승용차량으로부터의 N2O배출인자 특성연구)

  • Kim, Deug-Soo;Ryu, Jeong-Ho;Yoo, Young-Sook;Jung, Sung-Woon;Kim, Dae-Wook
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.179-185
    • /
    • 2007
  • Nitrous oxide ($N_2O$) is an important trace gas in the atmosphere not only because of its large global warming potential (GWP) but also because of the role in the ozone depletion in the stratosphere. It has been known that soil is the largest natural source of $N_2O$ in global emission. However, anthropogenic sources contributing from industrial section is likely to increase with rising the energy consumption, and transportation as well. In this study, a total of 32 gasoline-powered passenger vehicles (ranging from small to large engine's displacement and also ranging from aged catalyst to new catalyst) were tested on the chassis dynamometer system in order to elucidate the characteristics of $N_2O$ emission from automobiles under different driving modes. Ten different driving modes developed by NIER were adapted for the test. The results show that the $N_2O$ emission decreases logarithmically with increase of vehicle speed over the all test vehicles ($N_2O$) emission = -0.062 Ln (vehicle speed) + $0.289,\;r^2=0.97$). It revealed that the larger engine's displacement, the more $N_2O$ emission were recorded. The correlation between $N_2O$ emission and catalyst aging was examined. It found that the vehicles with aged catalyst (odometer record more than 8,0000km) emit more $N_2O$ than those with new catalyst. Average $N_2O$ emission was $0.086{\pm}0.095\;N_2O-g/km$ (number of samples=210) for the all test vehicles over the test driving modes.

Trends and Projected Estimates of GHG Emissions from Indian Livestock in Comparisons with GHG Emissions from World and Developing Countries

  • Patra, Amlan Kumar
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.27 no.4
    • /
    • pp.592-599
    • /
    • 2014
  • This study presents trends and projected estimates of methane and nitrous oxide emissions from livestock of India vis-$\grave{a}$-vis world and developing countries over the period 1961 to 2010 estimated based on IPCC guidelines. World enteric methane emission (EME) increased by 54.3% (61.5 to $94.9{\times}10^9kg$ annually) from the year 1961 to 2010, and the highest annual growth rate (AGR) was noted for goat (2.0%), followed by buffalo (1.57%) and swine (1.53%). Global EME is projected to increase to $120{\times}10^9kg$ by 2050. The percentage increase in EME by Indian livestock was greater than world livestock (70.6% vs 54.3%) between the years 1961 to 2010, and AGR was highest for goat (1.91%), followed by buffalo (1.55%), swine (1.28%), sheep (1.25%) and cattle (0.70%). In India, total EME was projected to grow by $18.8{\times}10^9kg$ in 2050. Global methane emission from manure (MEM) increased from $6.81{\times}10^9kg$ in 1961 to $11.4{\times}10^9kg$ in 2010 (an increase of 67.6%), and is projected to grow to $15{\times}10^9kg$ by 2050. In India, the annual MEM increased from $0.52{\times}10^9kg$ to $1.1{\times}10^9kg$ (with an AGR of 1.57%) in this period, which could increase to $1.54{\times}10^9kg$ in 2050. Nitrous oxide emission from manure in India could be $21.4{\times}10^6kg$ in 2050 from $15.3{\times}10^6kg$ in 2010. The AGR of global GHG emissions changed a small extent (only 0.11%) from developed countries, but increased drastically (1.23%) for developing countries between the periods of 1961 to 2010. Major contributions to world GHG came from cattle (79.3%), swine (9.57%) and sheep (7.40%), and for developing countries from cattle (68.3%), buffalo (13.7%) and goat (5.4%). The increase of GHG emissions by Indian livestock was less (74% vs 82% over the period of 1961 to 2010) than the developing countries. With this trend, world GHG emissions could reach $3,520{\times}10^9kg$ $CO_2$-eq by 2050 due to animal population growth driven by increased demands for meat and dairy products in the world.

Status and Trends of Emission Reduction Technologies and CDM Projects of Greenhouse Gas Nitrous Oxide (온실가스 아산화질소(N2O) 저감기술 및 CDM 사업의 현황과 전망)

  • Chang, Kil Sang
    • Applied Chemistry for Engineering
    • /
    • v.19 no.1
    • /
    • pp.17-26
    • /
    • 2008
  • With the effectuation of Kyoto Protocol on the United Nations Framework Convention on the Climate Change, the emission reduction of greenhouse gases became an urgent issue and has been competitively secured among countries as the form of certificates through clean development mechanism (CDM) or joint implementation (JI). Nitrous oxide ($N_2O$) is one of the major greenhouse gases along with carbon dioxide ($CO_2$) and methane ($CH_4$) having warming potential 310 times that of carbon dioxide and chemically very stable in the atmosphere to give a life time of more than 120 years so that it reaches to the stratosphere to act as an ozone depleting substance. $N_2O$ hardly decomposes and thus, besides to the adoption of thermal decomposition at high temperature, selective catalytic reduction methods are usually used at temperatures over $400^{\circ}C$ in which the presence of NOx acts as a major impeding material in the decomposition process. In this article, the sources of various $N_2O$ generation, catalytic reduction processes and the status and trends of emission trade with CDM projects for greenhouse gas reduction are summarized and discussed on a condensed basis.

Effect of Green Manure Crop and Biochar on Nitrous Oxide Emission from Red Pepper Field (녹비작물과 바이오숯의 고추 재배지 아산화질소 배출량 저감 효과)

  • Seo, Young-Ho;Kim, Se-Won;Choi, Seung-Chul;Kim, In-Jong;Kim, Kyung-Hi;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.540-543
    • /
    • 2012
  • Atmospheric nitrous oxide ($N_2O$) level has been increasing at a rate of 0.2~0.3% per year. The rise in $N_2O$ concentration in atmosphere was mainly due to an increased application of nitrogen fertilizers. The objective of the study was to assess the effect of green manure crop and biochar on $N_2O$ emissions from upland crop field. The green manure crop used in the study was hairy vetch and the cultivated crop was red pepper (Capsicum annuum L.). Nitrogen was applied at a rate of $190kg\;ha^{-1}$, standard N fertilization rate for red pepper. Emissions of $N_2O$ from the field were reduced from the plots applied with hairy vetch and biochar by 46.5% and 24.6%, respectively, compared with nitrogen fertilizer treated plots with $N_2O$ emission of $1.14kg\;N_2O-N\;ha^{-1}$. The results from the study imply that green manure crop and biochar can be utilized to reduce greenhouse gas emission from the upland crop field.

The Development of N2O Emission Factor at Municipal Solid Waste Incinerator (도시고형폐기물 소각시설의 N2O 배출계수 개발)

  • Ko, Jae Churl;Choi, Sang Hyun
    • Clean Technology
    • /
    • v.25 no.1
    • /
    • pp.40-45
    • /
    • 2019
  • In this study, nitrous oxide ($N_2O$) emission concentration was measured 3 times continuously for 24 hours from August 27, 2018 to October 22, 2018 and non-dispersive infrared (NDIR) spectrometer was used to calculate $N_2O$ concentration of exhaust gas from municipal solid waste (MSW) incinerator. As a result of $N_2O$ emission characteristics, it is estimated that $N_2O$ emission concentration is due to the difference of furnace temperature, oxygen concentration rather than the chemical component of waste. The measured $N_2O$ emission concentration of MSW incinerator was obtained in the range of 53.6 ~ 59.5 ppm and the total average concentration was measured 55.6 ppm. Therefore, the amount of $N_2O$ emissions calculated from the $N_2O$ concentration was $98.05kg\;day^{-1}$ on average and the amount of $N_2O$ distribution in the range of $90.41{\sim}108.44kg\;day^{-1}$ was obtained. As a result, the $N_2O$ emission factor of the MSW incinerator was estimated to be $1,066.13g_{N_2O}\;ton_{waste^{-1}}$. The estimated $N_2O$ emission factor of the MSW incinerator was 20 times higher than calculated emission factor used in the Tier 2 method. Consequently, it is considered that the method of calculating the amount of $N_2O$ emission in the MSW incineration facilities using waste type and incineration amount needs to be supplemented to ensure accuracy.

Assessment on Nitrous oxide (N2O) Emissions of Korea Agricultural Soils in 2009 (2009년 우리나라 농경지 토양에서의 N2O 배출량 평가)

  • Jeong, Hyun-Cheol;Kim, Gun-Yeob;Lee, Deog-Bae;Shim, Kyo-Moon;Lee, Seul-Bi;Kang, Kee-Kyung
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.6
    • /
    • pp.1207-1213
    • /
    • 2011
  • This study was conducted to assess $N_2O$ emissions in agricultural soils of Korea. According to 1996 and 2006 IPCC (Intergovernmental Panel on Climate Change) methodology, $N_2O$ emission was calculated the sum of direct emission ($N_2O_{DIRECT}$) and indirect emission ($N_2O_{INDIRECT}$). To calculate $N_2O$ emissions, emission factor was used default of IPCC and activity data was used the food, agricultural, forestry and fisheries statistical yearbook of MIFAFF (Ministry for Food, Agriculture, Forestry and Fisheries). It was emitted 8,608 $N_2O$ Mg resulted from direct emission by application of chemical fertilizer and animal manure, input in n-fixation crops and input of crop residues and emissions converted $N_2O$ into $CO_2$ equivalent was 2,668 $CO_2$-eq Gg. Indirect emission as $N_2O_{(G)}$ (atmospheric deposition of $NH_3$ and $NO_X$) and $N_2O_{(L)}$ (leaching and runoffs) were 4,567 and 6,013 $N_2O$ Mg and emissions converted $N_2O$ into $CO_2$ equivalent were 1,416 and 1,864 $CO_2$-eq Gg, respectively. Total $N_2O$ emission in Korea agricultural soil in 2009 was 5,948 $CO_2$-eq Gg.

A Experimental Study on Nitrous Oxide Formation in Direct Injection Diesel Engine (직접분사식 디젤엔진에서 아산화질소의 생성에 관한 실험적 연구)

  • Yoo, Dong-Hoon
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.2
    • /
    • pp.188-193
    • /
    • 2015
  • It has been generally recognized that $N_2O$(Nitrous Oxide) emission from marine diesel engines has a close correlation with $SO_2$(Sulfur Dioxide) emission, and diversity of fuel elements using ships affects characteristics of the $N_2O$ emission. According to recent reports, in case of existence of an enough large NO(Nitric Oxide) generated as fuel combustion, effect of the $SO_2$ emission in exhaust gas on the $N_2O$ formation is more vast than effect of the NO. Therefore, $N_2O$ formation due to the $SO_2$ element operates on a important factor in EGR(Exhaust Gas Recirculation) systems for NOx reduction. An aim of this experimental study is to investigate that intake gas of the diesel engine with increasing of $SO_2$ flow rate affects $N_2O$ emission in exhaust gas. A test engine using this experiment was a 4-stroke direct injection diesel engine with maximum output of 12 kW at 2600rpm, and operating condition was set up at a 75% load. A standard $SO_2$ gas with 0.499%($m^3/m^3$) was used for changing of $SO_2$ concentration in intake gas. In conclusion, the diesel fuel included out sulfur elements did mot emit the $SO_2$ emission, and the $SO_2$ emission in exhaust gas according as increment of the $SO_2$ standard gas had almost the same ratio compared with $SO_2$ rate in mixture inlet gas. Furthermore, the $N_2O$ element in exhaust gas was formed as $SO_2$ mixture in intake gas because increment of $SO_2$ flow rate in intake gas increased $N_2O$ emission. Hence, diesel fuels included sulfur compounds were combined into $SO_2$ in combustion, and $N_2O$ in exhaust gas should be generated to react with NO and $SO_2$ which exist in a combustion chamber.