• Title/Summary/Keyword: nitrogen ratio

Search Result 2,558, Processing Time 0.03 seconds

Crystal properties of wurtzite GaN grown under various nitrogen plasma conditions (여러 질소 플라즈마 상태에서 성장한 wurtzite GaN의 결정특성)

  • 조성환;김순구;유연봉
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.4
    • /
    • pp.354-358
    • /
    • 1997
  • Crystal properties of wurtzite GaN films grown on $Al_2O_3$(0001) substrates under various nitrogen pressure and plasma power by electron cyclotron resonance molecular beam epitaxy were investigated by full width at half maximum of X-ray diffraction peak and scanning electron microscope. It was found that the nitrogen pressure has a large effect on the FWHM value of XRD, and the GaN film grown under the optimum nitrogen pressure contains high density of dislocations. These results suggest that the crystal quality is sensitive to the plasma source conditions and that the relaxation of stress depends of V/III ratio. However, substrate-surface nitridation has little effect on the relaxation of misfit stress.

  • PDF

The Characteristics of suspended particulate matter and surface sediment of C, N in the Northern East China Sea ill summer (제주도 서남방 동중국해에서 하계 입자성부유물 및 표층퇴적물의 C, N 분포 특성)

  • KANG Mun Gyu;CHOI Young Chan
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.6 no.4
    • /
    • pp.13-23
    • /
    • 2003
  • Organic carbon and nitrogen contents in suspended particulate matter (SPM) and surface sediments in seawater were measured in the Northern East China Sea in summer. The distribution of particulate organic carbon(POC) and particulate organic nitrogen(PON) were in the ranges of 54~481㎍/ℓ and 6~85㎍/ℓ, respectively, with relatively high level of concentrations in the western and southern sides of the study area. Also, there has been a significantly positive correlation between POC and PON, gradually increasing toward the deeper range of depth. Average C:N ratios of POC and PON of SPM were 6 in study area. The ratios of POC to PON of SPM increased as the range of depth increased, indicating nitrogen decomposes more rapidly than carbon and is considered to be influenced by the input of detritus from surface sediments. The distribution of total organic matter(TOM), total organic carbon(TOC) and total organic nitrogen(TON) in surface sediments were in the ranges of 3.1~9.6%, 0.282~0.635% and 0.022~0.069%, respectively, with relatively low range in the western and northern sides of the study area. The ratio of TOC to TON of surface sediments were in the range of 9.8~17.4(average of 13), strongly indicating the active role of the input from the terrestrial organic pollutants.

  • PDF

Comparison of Determination Methods of Amino Nitrogen in Salt-Fermented Anchovy Sauce

  • Cho Young-Je;Kim Tae-Jin;Choi Yeung-Joon
    • Fisheries and Aquatic Sciences
    • /
    • v.4 no.3
    • /
    • pp.144-149
    • /
    • 2001
  • In other to establish the exact determination method of amino nitrogen (AN) in salt-fermented fish sauces, we determined the AN in fish sauces according to the measuring methods and also investigated the main factors influencing on determination method of AN. AN in salt-fermented anchovy sauce increased linearly as fermentation progressed, and was shown the highest amount measuring by the Formol method, followed by the trinitrobenzene sulfonic acid (TNBS) method and the Copper-salt method. AN concentration in anchovy sauces fermented for 12 months was $88.2\%$ and $77.6\%$ for the TNBS method and the Copper-salt method, respectively, on the basis of Formol method. The ratio of AN/total nitrogen (TN) in anchovy sauce fermented for 12 months was higher than that in commercial anchovy sauces. The determination of AN in anchovy sauce by the TNBS method was not affected by salt concentration, and slightly affected by heating. The effect of MSG on AN contents by Copper-salt method was shown higher than those by the Formol method and the TNBS method. The TNBS method was adaptable to measure the content of AN in fish sauce by this study.

  • PDF

Effects of Leaf Loading Quantity and Circulating Air Volume on the Physical and Chemical Characteristics during Curing in Flue-cured Tobacco Leaves. (열풍건조시 적입 및 송풍량에 따른 황색종 연초엽의 이화학성 변화)

  • 석영선;노재영
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.14 no.1
    • /
    • pp.48-56
    • /
    • 1992
  • This studies were carried out to investigate the effects of leaf loading quantity and circulating air volume during bulk curing on the variation of physical and chemical characteristics in flue-cured tobacco. The results are as follows : 1. The content of sugar in cured leaves was decreased with more circulating air volume and leaf loading quantity at bulk curing. 2. Total nitrogen and protein nitrogen were decreased with less circulating air volume and more leaf loading quantity, while amino nitrogen was increased. 3. The contents of linolenic acid and linoleic acid were increased with more leaf loading quantity and oxalic acid and citric acid had a tendency of being increased in case of high circulating air volume. 4. In general, major aromatic compounds were increased through flue-curing. Relatively high content of solanone in case of lower air volume and less leaf loading were observed, while megastig matrienone was increased when leaf loading was small. 5. The more circulation air volume with leaf loading quantity caused lowering equilibrium moisture content and higher shatter index, which resulted in poor quality of cured leaves based on quality index, nitrogen number, taste index phillips index, and sugar-nicotine ratio.

  • PDF

A comparative study on SBR and MLE Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR과 MLE 공정의 비교 평가)

  • Kim, Il-Whee;Lee, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.907-915
    • /
    • 2011
  • In this study, the SBR and MLE process was performed for a removal of the RO retentate and the nitrogen removal efficiency was evaluated. The inflow-rate of two processes was set a 10 L/day. The SBR process was operated a two cycle as HRT per one cycle was 12hr and the HRT of the anoxic and aerobic tank was respectively 7.5 hr and 16.5 hr. The methanol was injected for an effective denitrificaion owing to a low C/N ratio of the RO retentate. The two processes were effectively performed for nitrogen removal, but the average removal efficiency of the SBR process was about 94.93% better performance than the MLE process. Therefore, the SBR process demonstrated a good performance more than the MLE process for nitrogen removal of the RO retentate. The kinetic of SNR and SDNR was observed respectively 0.051 kg $NH_{3}-N/kg\;MLVSS{\cdot}dayg$ and 0.287 kg ${NO_3}^--N/kg\;MLVSS{\cdot}day$, which will be useful to design for the wastewater treatment system with a RO retentate.

Nitrogen Removal from a mixed Industrial Wastewater using Food-Waste Leachate and Sugar Liquid Waste as External Carbon Sources: Full-Scale Experiment (혼합 산업폐수의 질소제거를 위한 외부 탄소원 투입과 물질수지: 실증실험)

  • Lee, Monghak;Ahn, Johwan;Lee, Junghun;Bae, Wookeun;Shim, Hojae
    • Journal of Korean Society on Water Environment
    • /
    • v.28 no.5
    • /
    • pp.663-668
    • /
    • 2012
  • The feasibility of enhancing biological nutrient removal from an industrial wastewater was tested with food waste leachate and sugar liquid waste as external carbon sources. Long term influences of adding external carbon sources were investigated to see how the biological nutrient removal process worked in terms of the removal efficiency. The addition of the external carbons led to a significant improvement in the removal efficiency of nutrients: from 49% to approximately 76% for nitrogen and from 64% to around 80% for phosphorus. Approximately, 20% of the removal nitrogen was synthesized into biomass, while the remaining 80% was denitrified. Though the addition of external carbon sources improved nutrient removal, it also increased the waste sludge production substantially. The optimal observed BOD/TN ratio, based on nitrogen removal and sludge production, was around 4.0 in this study.

Growth, Carbon and Nitrogen Status of Container Grown Black Pine (Pinus thunbergii) Seedlings at Various Levels of Foliar Fertilization

  • Kim, Choonsig;Jeong, Jaeyeob;Moon, Tae-Shik;Park, Jun-Ho;Lim, Jong-Taek;Kim, Jong-Ik;Goo, Gwan-Hyo
    • Journal of Korean Society of Forest Science
    • /
    • v.98 no.5
    • /
    • pp.558-562
    • /
    • 2009
  • The growth, carbon and nitrogen status of container grown black pine (Pinus thunbergii) seedlings were examined at various levels of foliar fertilization (control, 0.1%, 0.2%, 0.3%). Root collar diameter, height and dry weight of black pine seedlings increased significantly with increasing levels of foliar fertilization (P<0.05). Carbon concentration in needle of black pine seedlings was significantly higher in the foliar fertilization than in the control treatments (P<0.05), while other seedling components such as stem and roots were not significantly different (P>0.05) between the foliar fertilization and the control treatments. Nitrogen concentration and content were significantly greater in the foliar fertilization than in the control treatments (P<0.05). Shoot/root ratio of black pine seedlings (needle+stem dry weight/root dry weight) was greater in the foliar fertilization (2.40-2.89) than in the control treatments (1.87). However, nitrogen use efficiency was significantly lower (P<0.05) in the foliar fertilization (28-46) than in the control (111) treatments. The results indicate that morphological characteristics and nutritional status on container grown black pine seedlings were enhanced by various levels of foliar fertilization.

Treatment Characteristics of Synthetic Wastewater using Immobilized Nitrobacteria, Denitrobacteria (고정화 질산균, 탈질균을 이용한 합성폐수의 처리 특성)

  • Won, Chan-Hee;Heo, Young-Duck;Yun, Jae-Seong
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.11 no.4
    • /
    • pp.63-70
    • /
    • 1997
  • The objectives of this study were to find out the optimum treatment conditions for removing nitrogen in a synthetic wastewater by using microorganisms immobilized with PVA-Freezing method. The samples used as influents to the laboratory scale treatment units were a synthetic wastewater. The experiments in this study were mainly directed to collect the data of nitrogen and organic matter removal efficiencies for the different hydraulic and internal recycle rates conditions, temperature and influent C/N ratios. The removal efficiencies of nitrogen and organic matters were investigated for the operating conditions of HRT 2~12hours, internal recycle rates 50~400%, temperatures $15{\sim}30^{\circ}C$ and C/N ratios 2.5~7.5. The adequate internal recycle rate for removing T-N and $BOD_5$ in the synthetic wastewater was found to be about 300% at the temperature of $30^{\circ}C$ when the ratio of carbon contents to the nitrogen (C/N) in the influent was around 5.5. Under these conditions, the final effluent concentrations of T-N and $BOD_5$ were 8.7 and 8.4 mg/l, respectively.

  • PDF

Factors affecting nitrite build-up in an intermittently decanted extended aeration process for wastewater treatment (하수처리를 위한 간헐 방류식 장기폭기 공정에서 아질산염의 축적에 영향을 미치는 인자)

  • Ahn, Kyu-Hong;Park, Ki-Young;Lee, Hyung-Jib
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.13 no.1
    • /
    • pp.51-60
    • /
    • 1999
  • An intermittently-aerated, intermittently-decanted single-reactor process (KIDEA process : KIST intermittently decanted extended aeration process) was applied for nitrogen removal from wastewater. Synthetic wastewater with chemical oxygen demand (COD): nitrogen (N) ratio of approximately 5.25: 1 was used. The average COD removal efficiency reached above 95%, and under optimal conditions nitrogen removal efficiency also reached above 90%. This process consisted of 72 minute aeration, 48 minute settling and 24 minute effluent decanting with continuous feeding of influent wastewater from the bottom of the reactor, and did not require a separate anoxic mixing-phase. In this process, nitritation ($1^{st}$ step of nitrification) was induced but nitratation($2^{nd}$ step of nitrification) was suppressed. Main factors responsible for the accumulation of nitrite ion in the experimental condition were free ammonium and dissolved oxygen. This condition of nitrite build-up accelerated by continuous feed flow in the bottom of the KIDEA reactor because of high concentration of ammonia nitrogen in the influent. This research provides one of answers to control nitrate build-up.

  • PDF

Effects of legume mixture on nitrogen fixation and transfer to grasses in spring paddy field

  • Lee, H.
    • Korean Journal of Organic Agriculture
    • /
    • v.19 no.spc
    • /
    • pp.161-164
    • /
    • 2011
  • Nitrogen fixation by legumes can be valuable sources for organic farming. This study was to investigate the effect of different legume mixtures on nitrogen fixation and transfer to grasses on spring paddy field. Three different mixtures were used (rye+hairy vetch, Italian ryegrass+crimson clover, oat+pea) in a randomized complete block design with three replications and sowed in pots with different sowing rate (5:5 rye:hairy vetch,7:3=Italian:crimson, 6:4=oat:pea) on early March. $(^{15}NH_4)SO_4$ solution at. 99.8 atom%$^{15}N$ was applied to the each pot at the rate of 2kg N $ha^{-1}$ on $16^{th}$ April. Forage were harvested at ground level in heading stage and separated into legume and grass. Total N content and $^{15}N$ value were determined using a continuous flow stable isotope ratio mass spectrometry. DM yield of rye+vetch, Italian+crimson and oat+pea were 6,607, 3,213 and 4,312kg/ha, respectively. Proportion of N from fixation was 0.73(rye+vetch), 0.42(Italian+crimson) and 0.93(oat+pea). The percentages of N transfer from legume to grass were from 61% to 24% in different method by treatments and -35% to 21% in isotope dilution method.