A comparative study on SBR and MLE Process for RO Retentate Treatment

RO 농축수 처리를 위한 SBR과 MLE 공정의 비교 평가

  • 김일회 (동국대학교 토목환경공학과) ;
  • 이상일 (동국대학교 토목환경공학과)
  • Published : 2011.12.15

Abstract

In this study, the SBR and MLE process was performed for a removal of the RO retentate and the nitrogen removal efficiency was evaluated. The inflow-rate of two processes was set a 10 L/day. The SBR process was operated a two cycle as HRT per one cycle was 12hr and the HRT of the anoxic and aerobic tank was respectively 7.5 hr and 16.5 hr. The methanol was injected for an effective denitrificaion owing to a low C/N ratio of the RO retentate. The two processes were effectively performed for nitrogen removal, but the average removal efficiency of the SBR process was about 94.93% better performance than the MLE process. Therefore, the SBR process demonstrated a good performance more than the MLE process for nitrogen removal of the RO retentate. The kinetic of SNR and SDNR was observed respectively 0.051 kg $NH_{3}-N/kg\;MLVSS{\cdot}dayg$ and 0.287 kg ${NO_3}^--N/kg\;MLVSS{\cdot}day$, which will be useful to design for the wastewater treatment system with a RO retentate.

Keywords

References

  1. 김금용, 조영철, 이상일 (2007)." 연속회분식반응조 공정에서 슬러지 체류시간과 중금속 독성의 관계". 대한환경공학회지, 29권 3호, pp.283-288.
  2. 김진호, 박민수, 이지웅, 장문석, 황병국, 이정학(2007). 하수 재이용을 위한 MBR-역삼투막 조합 공정(MBR-RO)의 적용. 공동춘계학술발표회 논문집, 한국물환경학회.대한상하수도학회, pp. 234-239.
  3. 이광현(2009). $A_{2}/O$ 공정을 이용한 고속도로 휴게소 오수처리시설의 최적 설계 및 운전특성에 관한 연구. 박사학위논문, 경기대학교.
  4. 최주솔, 박순호, 윤제용(2009). 하수 재이용 시설에서 RO 농축수 처리를 위한 적정 오존주입량 평가. 공동추계학술발표회 논문집, 대한상하수도학외.문환경학회, pp. 845-846
  5. 현승훈, 김응도, 홍승관, 안원영, 임성균, 김검태(2005). 침지형 MF 중공사막을 이용한 하수 2차 처리수의 재이용 연구. 상하수도학회지, 19(1), pp. 47-52.
  6. Alberto Cabrero, Sara Fernandez, Fernando Mirada and Julian Garcia (1998). "Effects of copper and zinc on the activated sludge bacteria growth kinetics". Wat. Res., Vol. 32, No. 5, pp. 1355-1362. https://doi.org/10.1016/S0043-1354(97)00366-7
  7. APHA, AWWA, WEF, 2005. Standard Methods for Examination of Water and Wastewater, 21thed.APHA,AWWAandWEF,Washin gton.
  8. Baltasar Penate, Lourdes Garcia-Rodriguez (2011). Current trends and future prospects in the desing of seawater reverse osmosis desalination technology. Desalination, DES-11028
  9. Baeza, J. A., Gabriel, D. and Lafunte, J. (2004). Effect of internal recycle on the nitrogen removal efficiency of an anaerobic/anoxic/oxic $A_{2}/O$wastewater treatment plant (WWTP). Process Biochemistry, 39, pp. 1615-1624. https://doi.org/10.1016/S0032-9592(03)00300-5
  10. Henze, M. (1986). Nitrate vs oxygen utilisation rates in wastewater and activated sludge systems. Water Sci. Tech., 18.
  11. Henze, M. (1989). The influence of raw wastewater biomass on activated sludge oxygen respiration rates and denitrification rates. Water Sci. Tech., 21, pp. 603-607.
  12. Henze, M. (1991). Capabilities of biological nitrogen removal processes from wastewater. Water Sci. Tech., 23, pp. 669-679.
  13. Henze, M and Harremoes, P. (1990). Chemical-biological nutrient removal: the HYPRO concept. Proceedingd of the 4th Gothenburg Symposium Chemical water and wastewater treatment, Madrid.
  14. Suntud and Methinee Boonchupleing (2009), " Effect of biosludge concentration on the effiecincy of sequencing batch reactor (SBR) system to treat wastewater containing $Pb^{2+}\;and\;Ni^{2+}$ ". Journal of Hazardous Materials, Vol(166), pp. 356-364. https://doi.org/10.1016/j.jhazmat.2008.11.023
  15. US EPA. Process design manual of nitrogen control. EPA 625/r- 93/010, Cincinnati,Ohio.1993.