• Title/Summary/Keyword: nitrogen ratio

Search Result 2,565, Processing Time 0.033 seconds

Relationship Between C/N Ratio and Nitrogen Removal in Intermittently Aerated Activated Sludge System (간헐폭기 활성슬러지공정에서 C/N비와 질소제거의 관계)

  • 서인석;김병군;이상일
    • Journal of environmental and Sanitary engineering
    • /
    • v.13 no.2
    • /
    • pp.57-65
    • /
    • 1998
  • In this research, Effect of C/N ratio on nutrient removal in intermittently aerated activated sludge system(IAASS) was investigated with dormitary, building and swine wastewater. Three types (2-stage, 4-stage, modified) of IAASS were operated. Time interval of aeration/nonaeration in IAASS was 1hr/1hr. In treatment of Dormitary wastewater(BOD/T-N ratio : 4.4), Building wastewater (BOD/T-N ratio : 3.14) and swine wastewater(BOD/T-N ratio : 3.84), Nitrogen removal efficiency of 80, 70 and 90.4% was achieved, respectively. Nitrogen removal in IAASS was a great influenced on influent C/N ratio, efficient nitrogen removal was achieved at BOD/T-N ratio over 4. In IAASS operation, $\Delta $BOD mg/L/$\Delta $ nitrogen mg/L ratio was about 4-6. Simultaneous removal of organic, nitrogen and phosphorus in IAASS can achieved. And influent organic was efficiently utilized in denitrification. IAASS could be one of the best alternative process for the retrofit of conventional activated sludge system for the removal of nutrients.

  • PDF

Characterization of Nitrogen Gas Crossover in PEM Fuel Cell Stacks (고분자 연료전지 스택에서 질소 크로스오버 특성에 관한 연구)

  • Baik, Kyung-Don;Kim, Min-Soo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.33 no.3
    • /
    • pp.207-214
    • /
    • 2009
  • Crossover of nitrogen from cathode to anode is inevitable in typical membranes used in PEM fuel cells. This crossovered nitrogen normally accumulates in the hydrogen recirculation system at anode side channels. Excessive buildup of nitrogen in the anode side lowers the relative hydrogen concentration and finally affects the performance of fuel cell stack. So it is very important to analysis the nitrogen gas crossover at various operating conditions. In this study, characterization of nitrogen gas crossover in PEM fuel cell stack was investigated. The mass spectroscopy (MS) has been applied to measure the amount of the crossovered nitrogen gas at the anode exit. Results show that nitrogen gas crossover rate was affected by current density, anode and cathode stoichiometric ratio and operating pressure. Current density, anode stoichiometric ratio and anode operating pressure do not affect nitrogen crossover rate but anode exit concentration of nitrogen. Cathode pressure and stoichiometric ratio largely affect the nitrogen crossover rate.

Properties of Nitrogen and Aluminum Codoped ZnO Thin Films Grown by Radio-frequency Magnetron Sputtering (라디오파 마그네트론 스퍼터링으로 성장한 질소와 알루미늄 도핑된 ZnO 박막의 특성)

  • Cho, Shin-Ho;Cho, Seon-Woog
    • Journal of Surface Science and Engineering
    • /
    • v.41 no.4
    • /
    • pp.129-133
    • /
    • 2008
  • Nitrogen and aluminum codoped ZnO(NAZO) thin films were grown on glass substrates with changing the nitrogen flow ratio by radio-frequency magnetron sputtering. The structural, optical, and electrical properties of the NAZO films were investigated. The surface morphologies and the structural properties of the thin films were analyzed by using the X-ray diffraction and scanning electron microscopy. The NAZO thin film, deposited at nitrogen flow ratio of 0%, showed a strongly c-axis preferred orientation and the lowest resistivity of $3.2{\times}10^{-3}{\Omega}cm$. The intensity of ZnO(002) diffraction peak was decreased gradually with increasing the nitrogen flow ratio. The optical properties of the films were measured by UV-VIS spectrophotometer and the optical transmittances for all the samples were found to be an average 90% in the visible range. Based on the transmittance value, the optical bandgap energy for the NAZO thin film deposited at nitrogen flow ratio of 0% was determined to be 3.46 eV. As for the electrical properties, the carrier concentration and the hall mobility were decreased, but the electrical resistivity was increased as the nitrogen flow ratio was increased.

Estimation of the Reactor Volume Ratio for Nitrogen Removal in Step-Feed Activated Sludge Process (단계 주입 활성슬러지공법에서 질소제거를 위한 반응기 용적비 추정)

  • Lee, Byung-Dae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.23 no.2
    • /
    • pp.130-136
    • /
    • 2006
  • Theoretical total nitrogen removal efficiency and reactor volume ratio in oxic-anoxic-oxic system can be found by influent water quality in this study. The influent water quality items for calculation were ammonia, nitrite, nitrate, alkalinity, and COD which can affect nitrification and denitrification reaction. Total nitrogen removal efficiency depends on influent allocation ratio. The total nitrogen removal follows the equation of 1/(1+b). Optimal reactor volume ratio for maximum TN removal efficiency was expressed by those influent water quality and nitrification/denitrification rate constants. It was possible to expect optimal reactor volume ratio by the calculation with the standard deviation of ${\pm}14.2$.

Effects on the Stability of Aerobic Granular Sludge (AGS) at Different Carbon/Nitrogen Ratio (C/N비 변화가 호기성 그래뉼 슬러지의 안정성에 미치는 영향)

  • Kim, Hyun-Gu;Ahn, Dae-Hee
    • Journal of Environmental Science International
    • /
    • v.28 no.9
    • /
    • pp.719-727
    • /
    • 2019
  • In this study, the effect on the stability of Aerobic Granular Sludge (AGS) with different Carbon/Nitrogen (C/N) ratios was investigated. The C/N ratios were controlled to 10.0, 7.5, 5.0, and 2.5 using the sequencing batch reactor, and the results showed that the removal efficiency of organic matter and total nitrogen decreased simultaneously with the decrease of C/N ratio. The removal efficiency of organic matter and total nitrogen at C/N ratio of 2.5 was 70.7% and 52.3% respectively. In addition, the AGS/mixed liquor suspended solids (MLSS) ratio showed a tendency to decrease from 85.7% to 73.7%, while the sludge volume index showed a tendency to increase from 82 mL/g to 102 mL/g as the C/N ratio decreased. At the same time, the apparent deviation of polysaccharide (PS) content in extracellular polymeric substances was observed, and polysaccharides/protein (PS/PN) ratio decreased from 0.62 to 0.31 as the C/N ratio decreased. Optical microscope observations showed that the reduction in C/N ratio caused the growth of filamentous bacteria and significantly affected the stability of AGS.

Optimizing the Performance of Three-Dimensional Nitrogen-Doped Graphene Supercapacitors by Regulating the Nitrogen Doping Concentration

  • Zhaoyang Han;Sang-Hee Son
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.376-384
    • /
    • 2023
  • Nitrogen-doped graphene was synthesized by a hydrothermal method using graphene oxide (GO) as the raw material, urea as the reducing agent and nitrogen as the dopant. The morphology, structure, composition and electrochemical properties of the samples are characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), nitrogen adsorption-desorption analysis, electrical conductivity and electrochemical tests. The results show that urea can effectively reduce GO and achieve nitrogen doping under the hydrothermal conditions. By adjusting the mass ratio of raw materials to dopants, the graphene with different nitrogen doping contents can be obtained; the nitrogen content range is from 5.28~6.08% (atomic fraction percentage).When the ratio of dopant to urea is 1:30, the nitrogen doping content reaches a maximum of 6.08%.The supercapacitor performance test shows that the nitrogen content prepared by the ratio of 6.08% is the best at 0.1 A·g-1. The specific capacitance is 95.2 F·g-1.

Effects of mixing/aeration ratio and SRT on nutrient removal in SBR process (연속회분식반응조 공정에서 교반/폭기비와 SRT가 영양염류제거에 미치는 영향)

  • Jeon, Seok-Jun;Kim, Han-Soo
    • Journal of Korean Society on Water Environment
    • /
    • v.18 no.3
    • /
    • pp.291-301
    • /
    • 2002
  • In this study, nutrients treatment by sequencing batch reactors(SBR) was performed. Nitrogen and phosphorus removal efficiencies were evaluated by changing SRT and mixing/aeration ratio. Not only nitrogen but also phosphorus removal patterns were investigated through track studies on 1 cycle. As SRT was fixed and mixing/aeration ratio was changed, maximum nitrogen removal efficiency was 87.6% at mixing/aeration ratio 0.67. Phosphorus removal efficiencies were more than 85.5% except no mixing condition. As mixing/aeration ratio was fixed and SRT was changed, nitrogen removal efficiencies were 70.5~79.8%, which represented slight changes, while phosphorus removal efficiencies were 49.0~97.3%, which represented sharply decreasing tendency at less than 20 day. Both phosphorus release rate k and maximum phosphorus release rate $P_{max}/M$ were are decreased as SRT was decreased, but they were not affected by mixing/aeration ratio. It was found that there is a linear relationship between ortho-phosphate uptake and maximum ortho-phosphate release.

Titanium nitride thin films for applications in thin film resistors

  • Cuong, Nguyen Duy;Kim, Dong-Jin;Kang, Byoung-Don;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.283-283
    • /
    • 2007
  • Titanium nitride thin films were deposited on $SiO_2$/Si substrate by rf-reactive magnetron sputtering. The structural and electrical properties of the films were investigated with various $N_2/(Ar+N_2)$ flow ratios (nitrogen/argon flow ratio). The resistivity as well as temperature coefficient of resistance (TCR) of the films strongly depends on phase structure. For the films deposited at nitrogen/argon flow ratio of below 5%, the resistivity increased with increasing nitrogen/argon flow ratios. However, the resistivity of the film deposited at nitrogen/argon flow ratio of 7% decreased drastically; it is even smaller than that of metal titanium nitride. A near-zero TCR value of approximately 9 ppm/K was observed for films deposited at nitrogen/argon flow ratio of 3%.

  • PDF

Characteristics of tantalum nitride thin film resistors deposited on $SiO_2/Si$ substrate using D.C-magnetron sputtering

  • Cuong, Nguyen Duy;Phuong, Nguyen Mai;Kim, Dong-Jin;Kang, Byoung-Don;Kim, Chang-Soo;Yoon, Soon-Gil
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2005.07a
    • /
    • pp.64-65
    • /
    • 2005
  • The structural and electrical properties of the films are investigated as a function of nitrogen/argon ratio at room temperature and at various deposition temperatures. The phase changes as $Ta_2N$ or TaN in the films were observed as nitrogen/argon ratio increases from 3% to 25%. The phase changes were associated with a change in the resistivity and TCR (temperature coefficient of resistance) of the films. TCR values of the films deposited at room temperature and different nitrogen contents were negative, and strongly decreased with the increase in nitrogen/argon ratio. The Ta2N films deposited at nitrogen/argon ratio of 3% show improved TCR values and thermal stability with increasing deposition temperature. The $Ta_2N$ films grown at nitrogen/argon ratio of 3% and the temperature of $200^{\circ}C$ showed a TCR value of -47 $ppm/^{\circ}C$, which is close to near-zero TCR in the range of deposition temperature.

  • PDF

Analysis on the Characteristics of Water Quality in Prearranged Saemangeum Area (새만금 예정수역의 수질특성 분석)

  • Lee, Gwang-Ya;Eom, Myeong-Cheol;Jo, Jae-Won;Jeong, Hae-Jin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.46 no.1
    • /
    • pp.107-117
    • /
    • 2004
  • Hourly monitoring data from Saemangeum estuary, which is expected to become freshwater, was analyzed to evaluate the water quality characteristics. Higher algal growth at spring season than winter influenced the high ratio of organic nitrogen to total nitrogen and concentration of chemical oxygen demand (COD). About 87.9% and 59.7% of organic nitrogen was observed at winter season and spring season, respectively. Daily salinity analysis at the mouth of two main rivers demonstrated that the Dongjin in river was more influenced by tidal effect and showed higher variation than the Mankyung river. The ratio of nitrogen to phosphorus (N/P ratio) was different with site (estuary versus sea area) and season (winter versus spring) remarkably. The N/P ratio was highest (32.74 ∼ 43.93) at estuary in winter and was lowest (1.78 ∼ 3.06) at sea in spring. The high N/P ratio at estuary area implies that phosphorus can be the limiting nutrient factor for algal growth as in general freshwater river, therefore, water quality management practice considering river characteristics rather might be needed in the Saemangeum estuary. The Saemangeum project is nationally recognized for its environmental issues, and especially water quality concern is a critical factor to make policy decision and further assessment with continued monitoring is strongly recommended.