• Title/Summary/Keyword: nitrogen harvest index

Search Result 28, Processing Time 0.024 seconds

Evaluation of Biomass and Nitrogen Status in Paddy Rice Using Ground-Based Remote Sensors (지상원격측정 센서를 이용한 벼의 생체량 및 질소 영양 평가)

  • Kang, Seong-Soo;Gong, Hyo-Young;Jung, Hyun-Cheol;Kim, Yi-Hyun;Hong, Suk-Young;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.6
    • /
    • pp.954-961
    • /
    • 2010
  • Ground-based remote sensing can be used as one of the non-destructive, fast, and real-time diagnostic tools for quantifying yield, biomass, and nitrogen (N) stress during growing season. This study was conducted to assess biomass and nitrogen (N) status of paddy rice (Oryza sativa L.) plants under N stress using passive and active ground-based remote sensors. Nitrogen application rates were 0, 70, 100, and 130 kg N $ha^{-1}$. At each growth stage, reflectance indices measured with active sensor showed higher correlation with DW, N uptake and N concentration than those with the passive sensor. NIR/Red and NIR/Amber indices measured with Crop Circle active sensors generally had a better correlation with dry weight (DW), N uptake and N content than vegetation indices from Crop Circle passive sensor and NDVIs from active sensors. Especially NIR/Red and NIR/amber ratios at the panicle initiation stage were most closely correlated with DW, N content, and N uptake. Rice grain yield, DW, N content and N uptake at harvest were highly positively correlated with canopy reflectance indices measured with active sensors at all sampling dates. N application rate explains about 91~92% of the variability in the SI calculated from NIR/Red or NIR/Amber indices measured with Crop Circle active sensors on 12 July. Therefore, the in-season sufficiency index (SI) by NIR/Red or NIR/Amber index from Crop Circle active sensors can be used for determination of N application rate.

SSR Analysis of Genetic Diversity and Nitrogen Use Efficiency Traits in Rice

  • Kim, Myung Ki;Oh, Myeong Kyu;Lee, Jeong Heui;Kim, Yeon Gyu;Lee, Young Tae;Kim, Kwang Ho;Ahn, Sang Nag
    • Korean Journal of Breeding Science
    • /
    • v.40 no.2
    • /
    • pp.119-127
    • /
    • 2008
  • A total of 41 microsatellite markers were used with 29 genotypes to examine the relationship between SSR polymorphisms and N-use efficiency related traits with a goal to identify the putative QTLs related to these traits. These primers yielded a total of 183 alleles (average 4.46 alleles per primer), and polymorphism information content (PIC) values of the SSRs ranged from 0.119 to 0.805 with mean value of 0.425. Correlation coefficients were obtained among the four N-use efficiency traits in the 34 accessions and significant positive correlations of relative ratios between grain yield and harvest index (r=0.3404) and total dry matter (r=0.7976), while N uptake showed a moderate level of correlation with the ratios of the grain yield and total dry matter, respectively. 36.5% (15/41) SSR markers were monomorphic among the 25 japonica accessions out of the 29 accessions. Association between SSR genotypes and phenotypic performances from the total (29) or japonica (25) accessions was tested based on a single point analysis. Three putative QTL regions were detected for the ratio of grain yield. These include the chromosomal region containing the RM283 locus on chromosome 1 and RM25 on chromosome 8 (all and japonica accessions) and the region with the SSR marker, RM206 on chromosome 11 (the japonica accessions). For the total dry matter ratio, two chromosomal regions were identified as the putative QTL region. One is the region with the SSR marker, RM162 on chromosome 6 (all and japonica accessions) and the other was the one with the SSR marker RM25 on chromosome 8 (the japonica accessions). Among these markers, RM25 showed associations with both traits.

Estimation for N Fertilizer Application Rate and Rice (Oriza sativa L.) Biomass by Ground-based Remote Sensors (지상원격탐사 센서를 활용한 벼의 질소시비수준 및 생체량 추정)

  • Shim, Jae-Sig;Lee, Joeng-Hwan;Shin, Su-Jung;Hong, Soon-Dal
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.5
    • /
    • pp.749-759
    • /
    • 2012
  • A field experiment was conducted to selection of ground-based remote sensor and reflectance indices to estimate rice production, estimation of suitable season for ground-based remote sensor and N top dressing fertilizer application rate in 2010. Fertilizer application was determined by "Fertilizer management standard for crops" (National Academy of Agricultural Science, 2006). Four levels of N-fertilizer were applied as 0%, 70%, 100% and 130% by base N-fertilizer application and were fertilized as 70% of basal dressing and 30% as top dressing. Rice (Oryza sativa L.) of Chucheong and Joonam (Korean cultivar) were planted on May 22, 2010 in sandy loam soil and harvested on October 6, 2010. Reflectance indices were measured 7 times from July 5 to August 23 by Crop circle-amber and red version and GreenSeeker-green and red version. Remote sensing angle from the sensor head to the canopy of rice was adjusted to $45^{\circ}$, $70^{\circ}$ and $90^{\circ}$ degree because of difference in the density of plant and the sensing angle. The reflectance indices obtained ground-based remote sensor were correlated with the biomass of rice at the early growth stage and at the harvest with $70^{\circ}$ and $90^{\circ}$ degree of sensor angle. The reflectance indices at the 52th Day After Transplanting (DAT) and the 59th DAT, critical season, were positively correlated with dry weight and nitrogen uptake. Specially NDVI at the 59th was significantly correlated with the mentioned parameters. Based on the result of this study, rNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Chucheong and rNDVI by Crop Circle on $70^{\circ}$ degree of angle and gNDVI by GreenSeeker on $70^{\circ}$ degree of angle at the 59th DAT in Joonam can be useful for estimation of dry weight and nitrogen uptake. Moreover, sufficiency index estimated by reflectance index at the 59th DAT can be useful for the estimation of N-fertilizer level application and can be used as a model for N-top dressing fertilizer management.

Effect of crop load on the yield, fruit quality, and fruit mineral contents of 'RubyS' apples

  • Nay Myo, Win;Dongyong, Lee;Yang-Yik, Song;Juhyeon, Park;Young Sik, Cho;Moo-Yong, Park;Youngsuk, Lee;Hun Joong, Kweon;Jingi, Yoo;In-Kyu, Kang;Jong-Chul, Nam
    • Korean Journal of Agricultural Science
    • /
    • v.49 no.3
    • /
    • pp.421-430
    • /
    • 2022
  • Crop load management in apple trees is important for achieving optimum productivity and crop value. Hence, we investigated the influence of different crop loads on the fruit quality, mineral content, and yield of the 'RubyS' apple variety. After 4 weeks of full bloom, the crop load was adjusted by hand thinning to different (5, 10, and 15 fruits·cm-2) trunk cross-sectional areas (TCSA), representing low, medium, and high crop loads. The low crop load increased the fruit size and weight, the development of the red-blushed area, and the peel color a* at harvest; however, it reduced the total number of fruits·tree-1 and yield compared with that of the other crop loads. The medium crop load improved the fruit weight, flesh firmness, and soluble solids content and reduced the fruits·tree-1 but did not affect the fruit size and yield. However, there were no significant differences in the titratable acidity and starch index among the crop loads. The fruit mineral content (phosphorus and potassium) was higher in the low and medium crop loads compared to the high crop load. However, the nitrogen, calcium, and magnesium contents in the fruits were not affected by the crop loads. Overall, this study suggests that a low crop load improves the fruit size and weight, but its effect on the quality and fruit mineral content is similar to that of a medium crop load. Therefore, the optimum crop load level for the 'RubyS' apple trees was approximately 10 fruits·cm-2 TCSA.

Nitrogen Uptake, Yield and Gross Income of Sweet Corn as Affected by Nitrogen (질소시비량이 단옥수수의 질소흡수, 수량 및 조수입에 미치는 영향)

  • 이석순;최상집
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.35 no.1
    • /
    • pp.83-89
    • /
    • 1990
  • A sweet corn hybrid, Golden Cross Bantam 70, was grown at 0, 5, 10, 15 and 20kg/10a of nitrogen (N) under the transparent P. E. film mulch to find the best yield evaluation method. Culm length, ear height, number of tillers increased and silking date was earlier by 1-2 days with increased N level. Leaf area index of main culm at harvest increased with increased N level. Marketable ears were divided into two classes according to the whole sale market price; the frist grade of which husked ear weight over 150g (unhusked ear weight 230g) and the second grade of which husked ear weight between 100 and 150g (unhusked ear weight between 180 and 230g). Average length, thickness, and weight of both grades of marketable ears were not different among the N levels. The proportion of the first grade increased with increased N level. However, total number and weight of marketable ears and gross income per 10a calculated considering weight and number of ears increased with increased N level. There were highly positive correlations between gross income and ear number or ear weight per l0a. The number and weight of marketable ears were underestimated at high N levels compared with gross income. Dry matter yield of stover ranged 740-963kg/10a and increased with increased N level with 20. 8-24.5% dry matter content. Rice black-streaked dwarf virus infection rate was 11.8-15.0%, but it was not related to N level. N concentration in ear was similar but that in stover increased with increased N level. Total N uptake increased but N recovery decreased with increased N level.

  • PDF

Study on the Effect of Deep Fertilization on Paddy Field - Efficiency of Ball Complex Fertilizer Mixed with Zeolite - (수도(水稻)에 대(對)한 심층추비효과(深層追肥効果)에 관(關)한 연구(硏究) - Zeolite 첨가(添加) Ball complex 비료(肥料)의 비효(肥効) -)

  • Kim, Tai-Soon;U., Zang-Kual
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.10 no.1
    • /
    • pp.61-67
    • /
    • 1977
  • A study was conducted in order to compare the topdressing method of the conventional fertilizers as control and the deep application method of the ball complex fertilizer newly developed. The ball complex fertilizer consisted of 5% of nitrogen, 5% of phosphorus, and 7% of potassium. Basal application of nitrogen for the rice plant was the same for both control plots and ball complex plots. One ball complex fertilizer per four hills was applied at depth of 12~13cm 35days before heading stage while control plot received three times topdressing at different growth stages as usual practice. The results obtained were as follows. 1. The ball complex fertilizer applied in the soil was continuously utilized by the rice plants until harvest time while nitrogen and potassium uptake of control plots was reduced rapidly after heading stage. Daily uptake of nitrogen and potassium per hill at maturing stage were 0.45mg and 0.68mg in control plots, but 4.80mg and 7.0mg respectively in ball complex plots. 2. Dry matter productivity of the rice plant in control plots, well coinciding with nutrients uptake pattern, was maximum just after heading stage decreased at maturing stage. But dry matter productivity in ball complex plots was much higher at maturing stage than at heading stage. 3. Ball complex application increased effective tillering rate, causing higher panicle number per hill. 4. Ball complex application brought about 528kg/10a of hulled grain yield while the conventional practice 423kg/10a. 5. Deep application of ball complex was superior to usual practice in terms of yield components such as panicle number per hill, filled grain number per panicle, maturing rate, and 1,000 grain weight. 6. From the morphological characteristics point of view, the deep application of ball complex made the flag leaf and the 2nd leaf heavier, larger and broader as compared to control treatment. 7. It is considered that by applying the ball complex fertilizer at depth of 12~13cm sufficient amount of nitrogen and potassium could be utilized by rice plants during the maturing stage and assimilated in the leaf blade, consequently making the flag leaf and the 2nd leaf bigger and healthier. The fact can easily explain that the ball complex plots had higher capacity of photosynthesis, less discoloration of lower leaves, bigger leaf area index, and better grain yield as compared to the conventional practice. In conclusion the deep application method of the ball complex fertilizer was superior to the routine topdressing method of the usual fertilizers.

  • PDF

Diagnosis of the Field-Grown Rice Plant -[1] Diagnostic Criteria by Flag Leaf Analysis- (포장재배(圃場栽培) 수도(水稻)의 영양진단(營養診斷) -1. 지엽분석(止葉分析)에 의(依)한 진단(診斷)-)

  • Park, Hoon
    • Applied Biological Chemistry
    • /
    • v.16 no.1
    • /
    • pp.18-30
    • /
    • 1973
  • The flag and lower leaves (4th or 5th) of rice plant from the field of NPK simple trial and from three low productive area were analyzed in order to find out certain diagnostic criteria of nutritional status at harvest. 1. Nutrient contents in the leaves from no fertilizer, minus nutrient and fertilizer plots revealed each criterion for induced deficiency (severe deficient case induced by other nutrients), deficiency (below the critical concentration), insufficiency (hidden hunger region), sufficiency (luxuary consumption stage) and excess (harmful or toxic level). 2. Nitrogen contents for the above five status was less than 1.0%, 1.0 to 1.2, 1.2 to 1.6, 1.6 to 1.9 and greater than 1.9, respectively. 3. It was less than 0.3%, 0.3 to 0.4, 0.4 to 0.55 and greater than 0.55 for phosphorus $(P_2O_5)$ but excess level was not clear. 4. It was below 0.5%, 0.5 to 0.9, 0.9 to 1.2, 1.2 to 1.4 and above 1.4 for potassium. 5. It was below 4%, 4 to 6, 6 to 11 and above 11 for silicate $(SiO_2)$ and no excess was appeared. 6. Potassium in flag leaf seemed to crow out nitrogen to ear resulting better growth of ear by the inhibition of overgrowth of flag leaf. 7. Phosphorus accelerated the transport of Mg, Si, Mn and K in this order from lower leaf to flag, and retarded that of Ca and N in this order at flowering while potassium accelerated in the order of Mn, and Ca, and retarded in the order of Mg, Si, P and N at milky stage. 8. Transport acceleration index (TAI) expressed as (F_2L_1-F_1L_2)\;100/F_1L_1$ where F and L stand for other nutrient cotents in flag and lower leaf and subscripts indicate the rate of a nutrient applied, appears to be suitable for the effect of the nutrient on the translocation of others. 9. The content of silicate $(SiO_2)$ in the flag was lower than that of lower leaf in the early season cultivation indicating hinderance in translocation or absorption. It was reverse in the normal season cultivation. 10. The infection rate of Helminthosporium frequently occurred in the potassium deficient field seemed to be related more to silicate and nitrogen content than potassium in the flag leaf. 11. Deficiency of a nutrient occured simultaniously with deficiency of a few other ones. 12. Nutritional disorder under the field condition seems mainly to be attributed to macronutrients and the role of micronutrient appears to be none or secondary.

  • PDF

Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment (중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향)

  • Cho Young-Son;Jeon Won-Tae;Park Chang-Young;Park Ki-Do;Kang Ui-Gum
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.5
    • /
    • pp.408-419
    • /
    • 2006
  • A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.