Study of Nutrient Uptake and Physiological Characteristics of Rice by $^{15}N$ and Purified Si Fertilization Level in a Transplanted Pot Experiment

중질소와 순수규산 시비수준이 벼의 양분흡수 및 생리적 특성에 미치는 영향

  • 조영손 (농촌진흥청 작물과학원) ;
  • 전원태 (농촌진흥청 작물과학원) ;
  • 박창영 (농촌진흥청 작물과학원 영남농업 연구소) ;
  • 박기도 (농촌진흥청 작물과학원 영남농업 연구소) ;
  • 강위금 (농촌진흥청 작물과학원 영남농업 연구소)
  • Published : 2006.09.01

Abstract

A pot experiment was conducted for two years to evaluate the effects of purified Si fertilization combined with $^{15}N$ on the nutrient uptake, plant growth characteristics, and photosynthetic characteristics of rice in water melon cultivated soil. In 2002, plant height was positively affected at 25 DAT (Day After Transplanting) by Si fertilization in 100%N treatment. However, in 2003, plant height at 25 DAT was negatively affected by Si fertilization in low N level but it was reversed in high N level with initial increase of plant height. Tiller number per pot was positively affected by N and Si fertilization level, especially for high N fertilized treatment. Leaf color was positively affected by Si fertilizatlon in no N fertilized pots, however, Si was not effected in 50%N and 100%N fertilized treatments. N harvest index (NHI) increased with increased Si fertilization in no N plots, however it decreased with increasing of N fertilization level. Nitrogen use efficiency (NUE) decreased with increasing of fertilized N but Si fertilization increased NUE in 50%N plots, however, it was not different by the Si fertilization level in 100%N plots. In 50%N+200%Si plots, NUE was greatest with 130 and shoot N content was $16.2g-N/m^{2}$. N content ($g/m^{2}$) in rice plant increased with increasing Si fertilization in no N plots at panicle initiation stage, 50 and 100%N plots at heading stage and all N treatment at harvesting time. This was mostly more efficient in late growth stage than early growth stage. The concentration (%) of P and K increased with increasing N fertilization level at heading and harvesting but it was not significantly different by the Si fertilization treatment except a little decreasing with increasing Si fertilization level at heading. Potassium content was also not significantly related with N fertilization level except increasing with Si fertilization level at panicle initiation stage. Plant Ca content (%) decreased with increasing of Si fertilization at heading stage and Si fertilization increased Ca content at panicle initiation stage and heading stage and it increased with increasing of Si fertilization level. Photosynthetic activity was not directly related with Si fertilization amount, however, Fluorescent factors, Fv'/Fm' and PsII, were positively affected by Si fertilization level. In conclusion, N fertilization in Si 200% fertilized condition should be reduced by about 50% level of recommended N fertilization for rice cropping in green-house water-melon cultivated paddy field. However, improvement of Ps by Si fertilization could not be attributed to Ps activity in the same leaf area but because of increased total leaf area per pot improved fluorescent characteristics.

유기물 함량이 높은 토양에서는 질소 감비조건에서 관행 시비구와 유사한 수량을 확보할 수 있었던 원인은 토양중의 유기물의 무기화에 의한 암모늄태 질소의 효과적인 방출과 수량구성요소에서 초기에 충분한 분얼수의 확보 그리고 생육후반기에 등숙률의 향상이 그 주요 원인이었다. 결국 수박재배에서 시용한 유기물과 비료성분들이 벼 재배에 일정량 이용될 수 있고 이로 인하여 벼 재배에서는 질소시비량을 줄일 수 있었으며, 추가로 병해충 발생감소와 미질향상의 효과를 규산질비료 시용을 통해서 가능한 것으로 사료되었다. 규산시용에 따른 미질의 향상은 수량이 관행보다 높은 경우에는 유의적인 차이를 보이지 못하였고 비슷한 수량 조건에서는 관행구보다 우수한 미질을 나타내어 적절한 수량과 미질이 우수한 시비체계는 질소 50% 감비에 규산 200% 시용방법이 유리한 것으로 사료된다. 규산 시용에 의한 단위면적당의 광합성활성은 효과가 없었으나, 식물체 전체의 광합성량은 엽면적과 엽신건물중의 증가로 무 규산구보다 높았으며, 순광합성량에 가장 큰 영향을 미치는 형광은 규산 처리구에서 효과적이었다. 결국 규산 시용으로 인한 형광특성의 개선이 벼 식물체 전체 광합성 효율을 높였고 또한 근활력과 건물중의 증가를 고려해 볼 때 수량을 증가 시킬 수 있는 포텐셜을 충분히 내재하고 있는 것으로 사료되었다. 결국 포장조건에서의 규산질비료의 시용은 칼슘과 마그네슘 등의 공조효과가 규산질 단독시용보다는 크며, 규산단독의 효과는 초장과 분얼수, 근활력, 건물중 등에서 낮은 질소시비조건보다는 높은 질소시비조건에서 더욱 유의적인 차이를 나타내는 것은 시비모델식과 일치하였다.

Keywords

References

  1. Cho, Y.S. and T. Kobata. 2002. N top-dressing and rice straw application for low-input cultivation of transplanted rice in Japan. Korean Journal of Crop Science. 47(4) : 273-278
  2. Cho Y.S., W.T. Jeon, S.D. Bae, and C.Y. Park, K.D. Park., D.G. Kang., R. Muthukumarasamy. 2006. Determination and effects of Nand Si fertilization levels on grain quality and pests of rice after winter green-house water-melon cropping. Kor. J. Crop Sci. 51(4) : 274-281
  3. Chun, A. and H.J. Lee. 2006. Absorption and partition of 15N-labeled fertilizer in rice under different nitrogen application time and rate conditions. Korean Journal of Crop Science. 51(1) : 32-40
  4. Deren, C.W., L.E. Datnoff., G.H. Snyder, and F.G. Martin. 1994. Silicon concentration, disease response, and yield components of rice genotypes grown on flooded organic Histosols. Crop Sci. 34 : 733-737 https://doi.org/10.2135/cropsci1994.0011183X003400030024x
  5. Fu, D.J., N.C. Paek, J.G. Kim, and B.W. Lee. 2003. Changes in physiological characteristics of barley genotypes under drought stress. Korean Journal of Crop Science. 48(6) : 506-515
  6. Furubayashi, S., J. Abe, S. Morita, and J. Yamagishi. 2002. The effect of modeling treatment on the growth, yield and bleeding sap rate of soybean (Glicine max) in two years with different precipitation. Bulletin of Kanto Branch of the Japanese Journal of Crop Science 17, 60-61. in Japanese
  7. Jang, G.S., S.J. Jung, Y.H. Kim, S.K. Rim, and S.Y. Hong. 2004. Soil testing of regional major crops for web service. 농업과학기술원 완결보고서 272-280
  8. Kang, Y.S., Y.T. Jung, and R.K. Park. 1981. Investigation on uptake of silica and phosphorous and rice fertilization impediment occured in Yeongnam area under the cool weather of 1980. Korean Journal of Crop Science. 26(3) : 226-232
  9. Kang, Y.S. and Y.T. Jung. 2002. Research on agricultural utilization of silicon in Korea : Progress and prospects. Second Silicon in Agriculture Conference. pp. 262-265
  10. Lee, C.S. 1986. Studies on determination of N-fertilizer rates for increasing rice field in paddy soils. Res. Rep. RDA (P.M & U). 28(2) : 6-21
  11. Lee, S.G. and B.H Kang. 2001. Effect of overhead flooding stress on photosynthesis and growth in rice. Korean Journal of Crop Science. 46(3) : 209-214
  12. Lee, S.K., Yu, J.C, and M. Kohno. 1975. Fate of inorganic nitrogen by addition of silica materials on the fresh soil condition. J. Korean Soc. Soil Sci. Fert. 8(2) : 61-68
  13. Ma, J.F., Y. Miyake, and E. Takahashi. 2001a. Silicon as a beneficial element for crop plants. 2001 ELSEVIER. Studies in Plant Science, 8. Silicon in Agriculture. pp. 17-39
  14. Ma, J.F., S. Goto, K. Tarnai, and M. Ichii. 2001b. Role of root hairs and lateral roots in silicon uptake by rice. Plant Physiology. 127(4) : 1773-1780 https://doi.org/10.1104/pp.010271
  15. Takahashi, E., J. Ma, and Y. Miyake. 1990. The possibility of silicon as an essential element for higher plants. Comm. Agric. Food Chem. 2. 99-122
  16. UTS,http://www.science.uts.edu.au/des/StaffPages/PeterRalph /fluorescence.html