• Title/Summary/Keyword: nitrogen defect

Search Result 53, Processing Time 0.027 seconds

An Estimation of the Consequence Analysis for Asphyxiation Accident in Confined Space using C.F.D. (CFD를 활용한 밀폐공간 가스질식사고의 피해 영향 평가)

  • Cho, Wan Su;Kim, Eui Soo
    • Journal of the Korean Society of Safety
    • /
    • v.33 no.5
    • /
    • pp.28-34
    • /
    • 2018
  • Recently, various engineering approaches have been widely used in the accident investigation field to identify the cause of the accident and to predict damage by accident. Computational analysis is the most commonly used method of accident investigation technique. This technique is mainly used to identify the mechanism of the accident generation and to determine the cause when it is difficult to reproduce the situation at the time of the accident or when it is impossible to perform a reproduction experiment. In this study, The computational fluid dynamics analysis for nitrogen asphyxiation accident generated by defect of building structural between diffusion outlet and cooling tower was performed to determine the inflow path of the suffocation gas, death possibility by concentration of suffocation gas and predicted the time of death due to the accident using 3D modeling and FLACS program. We can quantify diffusion concentration of asphyxiation gas and predict mechanism of death occurrence by accident and evaluate the consequence Analysis through this study. In the future, This method can be widely used in the field of gas safety by improving the reliability and validity of the analysis.

A Study on the Measurement of the Internal Crack in Flange Welding Zone by Digital Shearography (전자전단 간섭법을 이용한 플랜지 용접부 내부 결함 측정에 관한 연구)

  • Kim, Jeong-Pil;Kang, Young-June;Park, Sang-Kyu
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.26 no.1
    • /
    • pp.97-104
    • /
    • 2009
  • There is a many kinds with nondestructive testing such as RT and UT representatively. Referred before two testing methods there is a limit which is spatial such as nuclear pipe, small vessel, sealing up vessel. So a new technique needs to overcome the limit which is spatial. shearography will be able to overcome the limit which is spatial. This paper introducing shearography which was known as non-contact full-field testing method and It is an interferometric technique for measurement of surface deformation such as displacement or displacement gradient. Also, a research about internal defect of the flange welding zone was accomplished. About variation with method pressurized with the Gaseous Nitrogen. Phase map where is various were measured according to changing a sheared direction, size of crack and loaded pressure. Consequently, crack quantitatively to be detected qualitatively was measured by using shearography.

Clinical Manifestations of Inborn Errors of the Urea Cycle and Related Metabolic Disorders during Childhood

  • Endo, Fumio;Matsuura, Toshinobu;Yanagita, Kaede;Matsuda, Ichiro
    • Journal of The Korean Society of Inherited Metabolic disease
    • /
    • v.5 no.1
    • /
    • pp.76-87
    • /
    • 2005
  • Various disorders cause hyperammonemia during childhood. Amongthem are those caused by inherited defects in urea synthesis and related metabolic pathways. These disorders can be grouped into two types: disorders of the enzymes that comprise the urea cycle, and disorders of the transporters or metabolites of theamino acids related to the urea cycle. Principal clinical features of these disorders are caused by elevated levels of blood ammonium. Additional disease-specific symptoms are related to the particular metabolic defect. These specific clinical manifestations are often due to an excess or lack of specific amino acids. Treatment of urea cycle disorders and related metabolic diseases consists of nutritional restriction of proteins, administration of specific amino acids, and use of alternative pathways for discarding excess nitrogen. Although combinations of these treatments are extensively employed, the prognosis of severe cases remains unsatisfactory. Liver transplantation is one alternative for which a better prognosis is reported.

  • PDF

A brief review on the effect of impurities on the atomic layer deposited fluorite-structure ferroelectrics (원자층증착법으로 증착된 강유전성 플루오라이트 구조 강유전체 박막의 불순물 효과)

  • Lee, Dong Hyun;Yang, Kun;Park, Ju Yong;Park, Min Hyuk
    • Journal of the Korean institute of surface engineering
    • /
    • v.53 no.4
    • /
    • pp.169-181
    • /
    • 2020
  • The ferroelectricity in emerging fluorite-structure oxides such as HfO2 and ZrO2 has attracted increasing interest since 2011. Different from conventional ferroelectrics, the fluorite-structure ferroelectrics could be reliably scaled down below 10 nm thickness with established atomic layer deposition technique. However, defects such as carbon, hydrogen, and nitrogen atoms in fluorite-structure ferroelectrics are reported to strongly affect the nanoscale polymorphism and resulting ferroelectricity. The characteristic nanoscale polymorphism and resulting ferroelectricity in fluorite-structure oxides have been reported to be influenced by defect concentration. Moreover, the conduction of charge carriers through fluorite-structure ferroelectrics is affected by impurities. In this review, the origin and effects of various kinds of defects are reviewed based on existing literature.

Preparation and characterization of TiO2 membrane on porous 316 L stainless steel substrate with high mechanical strength

  • Mohamadi, Fatemeh;Parvin, Nader
    • Membrane and Water Treatment
    • /
    • v.6 no.3
    • /
    • pp.251-262
    • /
    • 2015
  • In this work the preparation and characterization of a membrane containing a uniform mesoporous Titanium oxide top layer on a porous stainless steel substrate has been studied. The 316 L stainless steel substrate was prepared by powder metallurgy technique and modified by soaking-rolling and fast drying method. The mesoporous titania membrane was fabricated via the sol-gel method. Morphological studies were performed on both supported and unsupported membranes using scanning electron microscope (SEM) and field emission scanning microscope (FESEM). The membranes were also characterized using X-ray diffraction (XRD) and $N_2$-adsorption / desorption measurement (BET analyses). It was revealed that a defect-free anatase membrane with a thickness of $1.6{\mu}m$ and 4.3 nm average pore size can be produced. In order to evaluate the performance of the supported membrane, single-gas permeation experiments were carried out at room temperature with nitrogen gas. The permeability coefficient of the fabricated membrane was $4{\times}10^{-8}\;lit\;s^{-1}\;Pa^{-1}\;cm^{-1}$.

Development of a Gas Assisted Injection Molding Process for Exterior Display Panels (디스플레이용 외장패널의 가스사출공정 개발)

  • Choi, D.S.;Kim, H.S.
    • Transactions of Materials Processing
    • /
    • v.21 no.1
    • /
    • pp.36-41
    • /
    • 2012
  • Gas Assisted Injection Molding is a relatively new low-pressure injection molding technique that provides benefits such as reduced part warpage, excellent surface quality without shrink marks, greater design flexibility, etc. In the gas assisted injection molding process, the injected pressurized nitrogen gas flows through designed gas channels and forms hollow sections within the part. However, due to the characteristics of the gas, the design of the gas channels which are the paths for the injected gas is important in order to avoid defects such as gas blowout, fingering, etc. Therefore, in this study, the gas channel design for gas assisted injection molding of exterior display panels was conducted by examining the results of three CAE analyses. The designed gas channel was verified by conducting tryouts using a 450 ton injection molding machine with 3-stage pressure controlled gas kit. In addition, the hollow shapes which were formed by the gas with the installed gas channels were examined by examining the cross sections of the prototypes that were produced. As a result, it was found that exterior display panels can be produced without any defect by applying the gas assisted injection molding technique.

Deposition of an Intermediate Layer on an Ultrapermeable Ceramic Support by Evaporation-Driven Self-Assembly (증발유도 자기조립을 이용한 고투과도 세라믹 지지체의 중간층 제조)

  • Kwon, Hyuk Taek;Kim, Jinsoo
    • Membrane Journal
    • /
    • v.31 no.1
    • /
    • pp.80-85
    • /
    • 2021
  • In this study, we developed an evaporation-driven self-assembly coating method for an ceramic intermediate layer on an ultrapermeable ��-Al2O3 support with large pore size of ~1.5 ㎛. The method led to the formation of a ceramic intermediate layer with higher surface homogeneity and less surface roughness than the conventional dip-coating method. A mesoporous ��-Al2O3 layer was deposited on the support to evaluate support quality. A supported ��-Al2O3 membrane was defect-free even without repeated coating. Furthermore, the membrane showed 2.3 times higher nitrogen permeance than one prepared on a macroporous support with pore size range of 100~200 nm, which is widely used for ceramic membrane coating.

A Clinical Study on Childhood Hemolytic Anemia According to Etiological Classification (소아 용혈성 빈혈 환자에서 원인에 따른 임상적 분석)

  • Kwon, Hae-Sik;Kang, Jung-Chul;Won, Sung-Chul;Oh, Seung-Hwan;Lyu, Chuhl-Joo
    • Clinical and Experimental Pediatrics
    • /
    • v.46 no.9
    • /
    • pp.883-888
    • /
    • 2003
  • Purpose : The etiology of hemolytic anemia can be classified as either cellular or extracellular defects of red blood cells. The aim of this study was to investigate the clinical and laboratory findings of hemolytic anemia concerning its etiological classification. Methods : Clinical and laboratory findings of the patients with hemolytic anemia treated from January 1987 to May 2002 at Severance Hospital were analyzed retrospectively. They were divided into two groups based on the types of red cell defects(group I : erythrocytic defect, group II : extraerythrocytic defect). Results : Twenty one cases were included in group I, thirty four cases in group II, and three cases were unclassified. In group I, nineteen cases(90.5%) were diagnosed as hereditary spherocytosis and were proved to have red cell membrane disorders while two cases(9.5%) were shown to have red cell enzyme deficiencies. In group II, thirteen cases(38.2%) were noted as autoimmune hemolytic anemia, eleven cases(32.4%) as traumatic or microangiopathic hemolytic anemia, four cases(11.8%) as drug induced hemolytic anemia, two cases(5.9%) were related with systemic lupus erythematosus and one case(2.9%) with malignancy. Hemoglobin at the time of diagnosis(7.5 g/dL vs. 6.2 g/dL, P<0.05) and the incidence of splenomegaly(85.7% vs. 18.2%, P<0.05) were higher in group I though blood urea nitrogen(9.0/0.4 mg/dL vs. 27.8/1.6 mg/dL, P<0.05) was higher in group II. Conclusion : Comparing the clinical features of pediatric hemolytic anemia, we concluded as following : In cases associated with extraerythrocytic defect, blood tests revealed significant initial lower hematocrit with higher level of BUN and Cr while cases with erythrocytic defect, splenomegaly were more common noted.

A Study on the Characteristics of Natural, Synthetic, and Treated Gem Quality Diamonds by NMR and EPR (NMR과 EPR을 이용한 천연, 합성, 그리고 처리된 보석용 다이아몬드의 특성 연구)

  • Kim, Jong-Rang;Jang, Yun-Deuk;Kim, Sun-Ha;Kim, Jong-Hwa;Paik, Youn-Kee
    • Journal of the Mineralogical Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.435-442
    • /
    • 2008
  • Natural, synthetic, and treated diamonds were studied by NMR and EPR. It was demonstrated that natural and synthetic diamonds, treated and non-treated diamonds, high pressure high temperature (HPHT) treated and electron beam treated diamonds could be distinguished among each other based on the $^{13}C$ NMR spectra acquired for relatively short periods of 100 minutes. The $^{13}C$ NMR linewidths of gem quality synthetic diamonds were broader than 1.6 ppm due to the paramagentic effects of transition metals, generally used as catalysts, while the linewidths of gem quality natural diamonds were narrower than 0.5 ppm regardless of the methods of treatment. The linewidth (0.5 ppm) for a HPHT treated, gem quality natural diamond was as broad as more than twice of the linewidth (0.2 ppm) of an electron beam treated diamond. The $^{13}C$ NMR signal intensities of treated, gem quality natural diamonds were as strong as more than 10 times of the intensities of non-treated, gem quality natural diamonds. When correlated with the concentrations of the paramagnetic defects (electrons) obtained from the EPR spectra, the relative $^{13}C$ NMR signal intensities increased in proportion to the concentrations of the paramagnetic electrons contained in each sample but the electron beam treated diamond was an exception. This suggested that the lattice component, in addition to the paramagnetic defect component, should also be considered in determining the $^{13}C$ NMR signal intensity of the electron beam treated diamond.

Tunable doping sites and the impacts in photocatalysis of W-N codoped anatase TiO2

  • Choe, Hui-Chae;Sin, Dong-Bin;Yeo, Byeong-Cheol;Song, Tae-Seop;Han, Sang-Su;Park, No-Jeong;Kim, Seung-Cheol
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.246-246
    • /
    • 2016
  • Tungsten-nitrogen (W-N) co-doping has been known to enhance the photocatalytic activity of anatase titania nanoparticles by utilizing visible light. The doping effects are, however, largely dependent on calcination or annealing conditions, and thus, the massive production of quality-controlled photocatalysts still remains a challenge. Using density functional theory (DFT) thermodynamics and time-dependent DFT (TDDFT) computations, we investigate the atomic structures of N doping and W-N co-doping in anatase titania, as well as the effect of the thermal processing conditions. We find that W and N dopants predominantly constitute two complex structures: an N interstitial site near a Ti vacancy in the triple charge state and the simultaneous substitutions of Ti by W and the nearest O by N. The latter case induces highly localized shallow in-gap levels near the conduction band minimum (CBM) and the valence band maximum (VBM), whereas the defect complex yielded deep levels (1.9 eV above the VBM). Electronic structures suggest that substitutions of Ti by W and the nearest O by N improves the photocatalytic activity of anatase by band gap narrowing, while defective structure degrades the activity by an in-gap state-assisted electron-hole recombination, which explains the experimentally observed deep level-related photon absorption. Through the real-time propagation of TDDFT (rtp-TDDFT), we demonstrate that the presence of defective structure attracts excited electrons from the conduction band to a localized in-gap state within a much shorter time than the flat band lifetime of titania. Based on these results, we suggest that calcination under N-rich and O-poor conditions is desirable to eliminate the deep-level states to improve photocatalysis.

  • PDF