• Title/Summary/Keyword: nitrogen cycle

Search Result 355, Processing Time 0.025 seconds

Cryogenic cooling system for HTS cable

  • Yoshida, Shigeru
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.2
    • /
    • pp.1-8
    • /
    • 2017
  • Recently, Research and development activity of HTS (High Temperature Superconducting) power application is very progressive worldwide. Especially, HTS cable system and HTSFCL (HTS Fault current limiter) system are proceeding to practical stages. In such system and equipment, cryogenic cooling system, which makes HTS equipment cooled lower than critical temperature, is one of crucial components. In this article, cryogenic cooling system for HTS application, mainly cable, is reviewed. Cryogenic cooling system can be categorized into conduction cooling system and immersion cooling system. In practical HTS power application area, immersion cooling system with sub-cooled liquid nitrogen is preferred. The immersion cooling system is besides grouped into open cycle system and closed cycle system. Turbo-Brayton refrigerator is a key component for closed cycle system. Those two cooling systems are focused in this article. And, each design and component of the cooling system is explained.

Detection of Low Cycle Fatigue in Type 316 Stainless Steel using HTS-SQUID

  • Park, D.G.;Kim, D.W.;Timofeev, V.P.;Hong, J.H.
    • Corrosion Science and Technology
    • /
    • v.3 no.5
    • /
    • pp.222-225
    • /
    • 2004
  • A portable RF HTS SQUID-based susceptometer was applied to the measurement of fatigue behavior for type 316L(N) stainless steel containing 0.04% to 0.15% nitrogen content. Strain-controlled low cycle fatigue (LCF) tests were conducted at RT and $600^{\circ}C$ in air an atmosphere, and the magnetic moments were measured after the fatigue test using HTS SQUID. The magnetic moment of an as-received sample is higher than that of a fatigued sample in all the temperature ranges irrespective of the nitrogen content. The fatigue life decreased with an increasing test temperature up to $500^{\circ}C$, but increased at $600^{\circ}C$. The change of the magnetic moments by LCF test is attributed to the stress induced micro defects.

Performance Test of Cooling System for the KEPCO HTS Power Cable (한전 초전도전력케이블 냉각시스템 성능시험)

  • Yang, H.S.;Kim, D.L.;Sohn, S.H.;Lim, J.H.;Choi, H.O.;Lee, B.S.;Choi, Y.S.;Ryoo, H.S.;Hwang, S.D.
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2206-2210
    • /
    • 2007
  • As a power transmission line supplying power to a densely populated city, the high temperature superconducting (HTS) cable is expected to one of the most effective cables with a compact size because of its high current density. The verification of HTS power cable system have been progressed by KEPRI. A cooling system for a 3-phase 100m HTS power cable with 22.9kV/1.25kA was installed and tested at KEPCO's Gochang power testing center in Korea. The system consists of a liquid nitrogen decompression cooling system with a cooling capacity of 3kW and a closed circulation system of subcooled liquid nitrogen. Several performance tests of the cable system with respect to the cooling such as cooling capacity, heat load and temperature stability, were performed at several temperatures. Thermal cycle test, cool-down to liquid nitrogen temperature and warm-up to room temperature, was also performed to investigate thermal cycle influences. The outline of the installed cooling system and performance test results are presented in this paper.

  • PDF

A comparative study on SBR and MLE Process for RO Retentate Treatment (RO 농축수 처리를 위한 SBR과 MLE 공정의 비교 평가)

  • Kim, Il-Whee;Lee, Sang-Il
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.25 no.6
    • /
    • pp.907-915
    • /
    • 2011
  • In this study, the SBR and MLE process was performed for a removal of the RO retentate and the nitrogen removal efficiency was evaluated. The inflow-rate of two processes was set a 10 L/day. The SBR process was operated a two cycle as HRT per one cycle was 12hr and the HRT of the anoxic and aerobic tank was respectively 7.5 hr and 16.5 hr. The methanol was injected for an effective denitrificaion owing to a low C/N ratio of the RO retentate. The two processes were effectively performed for nitrogen removal, but the average removal efficiency of the SBR process was about 94.93% better performance than the MLE process. Therefore, the SBR process demonstrated a good performance more than the MLE process for nitrogen removal of the RO retentate. The kinetic of SNR and SDNR was observed respectively 0.051 kg $NH_{3}-N/kg\;MLVSS{\cdot}dayg$ and 0.287 kg ${NO_3}^--N/kg\;MLVSS{\cdot}day$, which will be useful to design for the wastewater treatment system with a RO retentate.

Approaches for Developing a Forest Carbon and Nitrogen Model Through Analysis of Domestic and Overseas Models (국내외 모델 분석을 통한 산림 탄소 및 질소 결합 모델 개발방안 연구)

  • Kim, Hyungsub;Lee, Jongyeol;Han, Seung Hyun;Kim, Seongjun;Son, Yowhan
    • Journal of Korean Society of Forest Science
    • /
    • v.107 no.2
    • /
    • pp.140-150
    • /
    • 2018
  • For the estimation of greenhouse gas dynamics in forests, it is useful to use a model which simulates both carbon (C) and nitrogen (N) cycle simultaneously. A forest C model, called FBDC, was developed and validated in Korea. However, studies on development of forest N model are insufficient. This study aimed to suggest a development process of a forest C and N model. We analyzed the general features, structures, ecological processes, input data, output data, and methods of integrating C and N cycles of the VISIT, Biome-BGC, Forest-DNDC, and O-CN. The structure and features of the FBDC were also analyzed. The VISIT was developed by integrating forest C model with a N cycle module, and the new model also could be designed by combining the FBDC with a N cycle module. The VISIT and Forest-DNDC could estimate soil $N_2O$ emissions, and the integrated model should include the processes shared by these models. Especially, the overseas models linked C and N cycles based on N absorption, C absorption, and decomposition of dead organic matter. Therefore, the integration of the FBDC with N cycle module should apply this linkage of structures between C and N cycles. Climate, soil texture, and species distribution data, which are essential for the model development, were available in Korea. However, parameter data associated with N cycle and validation data for soil $N_2O$ emissions need to be obtained by field studies.

Experimental training of shape memory alloy fibres under combined thermomechanical loading

  • Shinde, Digamber;Katariya, Pankaj V;Mehar, Kulmani;Khan, Md. Rajik;Panda, Subrata K;Pandey, Harsh K
    • Structural Engineering and Mechanics
    • /
    • v.68 no.5
    • /
    • pp.519-526
    • /
    • 2018
  • In this article, experimental training of the commercial available shape memory alloy fibre (SMA) fibre under the combined thermomechanical loading is reported. SMA has the ability to sense a small change in temperature (${\geq}10^{\circ}C$) and activated under the external loading and results in shape change. The thermomechanical characteristics of SMA at different temperature and mechanical loading are obtained through an own lab-scale experimental setup. The analysis is conducted for two types of the medium using the liquid nitrogen (cold cycle) and the hot water (heat cycle). The experimental data indicate that SMA act as a normal wire for Martensite phase and activated behavior i.e., regain the original shape during the Austenite phase only. To improve the confidence of such kind of behavior has been verified by inspecting the composition of the wire. The study reveals interesting conclusion i.e., while SMA deviates from the equiatomic structure or consist of foreign materials (carbon and oxygen) except nickel and titanium may affect the phase transformation temperature which shifted the activation phase temperature. Also, the grain structure distortion of SMA wire has been examined via the scanning electron microscope after the thermomechanical cycle loading and discussed in details.

Design of closed-loop nitrogen Joule-Thomson refrigeration cycle for 67 K with sub-atmospheric device

  • Lee, C.;Lee, J.;Jeong, S.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.45-50
    • /
    • 2013
  • Closed-loop J-T (Joule-Thomson) refrigeration cycle is advantageous compared to common open loop $N_2$ decompression system in terms of nitrogen consumption. In this study, two closed-loop pure $N_2$ J-T refrigeration systems with sub-atmospheric device for cooling High Temperature Superconductor (HTS) power cable are investigated. J-T cooling systems include 2-stage compressor, 2-stage precooling cycle, J-T valve and a cold compressor or an auxiliary vacuum pump at the room temperature. The cold compressor and the vacuum pump are installed after the J-T valve to create sub-atmospheric condition. The temperature of 67 K is possible by lowering the pressure up to 24 kPa at the cold part. The optimized hydrocarbon mixed refrigerant (MR) J-T system is applied for precooling stage. The cold head of precooling MR J-T have the temperature from 120 K to 150 K. The various characteristics of cold compressor are invstigated and applied to design parameter of the cold compressor. The Carnot efficiency of cold compressor system is calculated as 16.7% and that of vacuum pump system as 16.4%. The efficiency difference between the cold compressor system and the vacuum pump system is due to difference of enthalpy change at cryogenic temperature, enthalpy change at room temperature and different work load at the pre-cooling cycle. The efficiency of neon-nitrogen MR J-T system is also presented for comparison with the sub-atmospheric devices. These systems have several pros and cons in comparison to typical MR J-T systems such as vacuum line maintainability, system's COP and etc. In this paper, the detailed design of the subcooled $N_2$ J-T systems are examined and some practical issues of the sub-atmospheric devices are discussed.

LNG운반선의 증발기체 재액화 장치의 사이클 해석

  • Jin, Yeong-Uk
    • Proceedings of the Safety Management and Science Conference
    • /
    • 2012.04a
    • /
    • pp.221-232
    • /
    • 2012
  • Cycle analysis has been performed to find out the optimum design point of the BOG re-liquefaction plant. The cycle state, defined by three cycle variables, was mainly described by the three cold temperatures of the three-pass heat exchanger, on which the constraints by the heat exchanger are imposed. The cycle states which are confined within a domain limited by the temperature constraints were the primary issue of this study. The BOG mass within the domain was analyzed first and then the cycle performance was related to the BOG mass afterwards, which enabled us to explain the observed behavior of the cycle performance under the temperature constraints by the heat exchanger. A good cycle performance could be ensured if the two cold Nitrogen temperatures of the three temperatures were placed close together near $-140^{\circ}C$ while the BOG temperature is kept far above enough, but not too far, from $-140^{\circ}C$ such that it does not interfere in their optimum temperature range.

  • PDF

Nitrite Accumulation Characteristics and Quantitative Analyses of Nitrifying and Denitrifying Bacteria in a Sequencing Batch Reactor (연속회분반응기의 아질산 축적 특성과 질산화 및 탈질 미생물의 정량적 분포 연구)

  • Kim, Dong-Jin;Kwon, Hyun-Jin;Yoon, Jung-Yee;Cha, Gi-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.24 no.3
    • /
    • pp.383-390
    • /
    • 2008
  • Recently, the interests on economical nitrogen removal from wastewater are growing. As a method of the novel nitrogen removal technology, nitrogen removal via nitrite pathway by selective inhibition of free ammonia and free nitrous acid on nitrite oxidizing bacteria have been intensively studied. The inhibition effects of free ammonia and free nitrous acid are low when domestic wastewater is used, however, because of its relatively lower nitrogen concentration than the wastewater from industry and landfill, etc. In this study, a sequencing batch reactor (SBR) is proposed for nitrogen removal to investigate the effect of the low nitrogen concentration on nitrite accumulation. Nitrification efficiency reached almost 100% during the aerobic cycle and the maximum specific nitrification rate ($V_{max,nit}$) reached $17.8mg\;NH_4{^+}-N/g\;MLVSS{\bullet}h$. During the anoxic cycle, average denitrification efficiency reached 87% and the maximum specific denitrification rate ($V_{max,den}$) reached $9.8mg\;NO_3{^-}-N/g\;MLVSS{\bullet}h$. From the analysis the main reason of nitrite accumulation in the SBR was free nitrous acid rather than free ammonia. Nitrite accumulation increased with the decrease of organic content in the wastewater and the mechanism is not well understood yet. From the result of fluorescent in situ hybridization, the distribution of nitrite oxidizing bacteria was in equilibrium with ammonium oxidizing bacteria when nitrite accumulation did not occur.