• Title/Summary/Keyword: nitrate-N

Search Result 1,049, Processing Time 0.022 seconds

Changes of Nitrosamine-Related-Compounds by Salt Concentration and Nitrate Content during the Korean Native Soysauce Fermentation (재래(在來) 간장덧 숙성중(熟成中) 식염농도(食鹽濃度)와 Nitrate함량(含量)에 따른 Nitrosamine 관련물질(關聯物質)의 변화(變化))

  • Kim, Mi-Seong;Koh, Moo-Seok;Kwon, Tae-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.14 no.4
    • /
    • pp.329-338
    • /
    • 1985
  • This study was undertaken in order to research formation of nitrosamine and its related compounds by salt concentration and nitrate content during Korean native soysauce fermentation. The results from measuring the changes of nitrite and dimethylamine content can be summerized as follows. As the nitrate content in used water was getting higher and the salt concentration was getting lower, the soysauce fermentation was abnormal. As the salt concentration was getting higher, the reduction of nitrate and formation of nitrite were delayed. But whether the nitrate content in used water was higher or not, the nitrite was continuously remained. An addition of ascorbic acid restrained the reduction of nitrate, and simultaneously, it could eliminate the nitrite effectively. As the nitrate content in used water, was getting higher, the content of dimethylamine was getting lower. Nitrosodimethylamine was detected from 0 to 261.34 ppb.

  • PDF

Nitrate Contamination of Confined Groundwaters: Application of Nitrogen, Oxygen, and Hydrogen Isotopes (피압대수층 지하수내 질소함유 원인연구: 질소, 산소, 수소동위원소 적용)

  • 추창오;이병대;조병욱;성익환;지세정
    • The Journal of Engineering Geology
    • /
    • v.12 no.3
    • /
    • pp.285-294
    • /
    • 2002
  • The origin of nitrate in confined groundwater was studied using oxygen ($\delta$180), hydrogen ($\delta$D), and nitrogen ($\delta$15N) stable isotopes, along with chemical data of NO3-N. We analyzed groundwaters from more than sixty manufactories producing natural mineral waters around the country During the period of 1998-2001, an average value of nitrate was fair]y low (0.95 mg/$\ell$), however, groundwaters from six sites showed more than 2 mg/$\ell$ of nitrate. The stable isotope data of the groundwaters are -8.3~-11 $\textperthousand$ $\delta$8O, -60~-75 $\textperthousand$ $\delta$D, which lies in an average range of the groundwaters. The nitrogen isotope data with -11.8~-5.1$\textperthousand$ $\delta$15N suggest that manure, organic nitrate, and fertilizers can not be the origin of nitrate in the goundwaters.

Reduction of Nitrate using Nanoscale Zero-Valent Iron Supported on the Ion-Exchange Resin (이온교환 능력을 가진 지지체에 부착된 나노 영가철을 이용한 질산성 질소의 환원과 부산물 제거)

  • Park, Heesu;Park, Yong-Min;Jo, Yun-Seong;Oh, Soo-Kyeong;Kang, Sang-Yoon;Yoo, Kyoung-Min;Lee, Seong-Jae;Choi, Yong-Su;Lee, Sang-Hyup
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.21 no.6
    • /
    • pp.679-687
    • /
    • 2007
  • Nanoscale zero valent ion (nZVI) technology is emerging as an innovative method to treat contaminated groundwater. The activity of nZVI is very high due to their high specific surface area, and supporting this material can help to preserve its chemical nature by inhibiting oxidation. In this study, nZVI particles were attached to granular ion-exchange resin through borohydride reduction of ferrous ions, and chemical reduction of nitrate by this material was investigated as a potential technology to remove nitrate from groundwater. The pore structure and physical characteristics were measured and the change by the adsorption of nZVI was discussed. Batch tests were conducted to characterize the activity of the supported nZVI and the results indicated that the degradation of nitrate appeared to be a pseudo first-order reaction with the observed reaction rate constant of $0.425h^{-1}$ without pH control. The reduction process continued but at a much lower rate with a rate constant of $0.044h^{-1}$, which is likely limited by mass transfer. To assess the effects of other ions commonly found in groundwater, the same experiments were conducted in simulated groundwater with the same level of nitrate. In simulated groundwater, the rate constant was $0.078h^{-1}$ and it also reduced to $0.0021h^{-1}$ in later phase. The major limitation in application of ZVI for nitrate reduction is ammonium production. By using a support material with ion exchange capacity, the problem of ammonium release can be solved. The ammonium was not detected in the batch test, even when other competitive ions such as calcium and potassium existed.

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem ;Jaewook Kim ;Wonsil Bae ;Moo-Geun Jee ;Jin Yu ;Inbae Jang;Dong-Yun Lee ;Chang Pyo Hong ;Donghwan Shim;Hojin Ryu
    • Journal of Ginseng Research
    • /
    • v.47 no.3
    • /
    • pp.469-478
    • /
    • 2023
  • Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Sensing Nitrate and Potassium Ions in Soil Extracts Using Ion-Selective Electrodes (이온선택성 전극을 이용한 토양추출물의 질산 및 칼륨이온 측정)

  • Kim, H.J.;Sudduth Kenneth A.;Hummel John W.
    • Journal of Biosystems Engineering
    • /
    • v.31 no.6 s.119
    • /
    • pp.463-473
    • /
    • 2006
  • Automated sensing of soil macronutrients would allow more efficient mapping of soil nutrient spatial variability for variable-rate nutrient management. The capabilities of ion-selective electrodes for sensing macronutrients in soil extracts can be affected by the presence of other ions in the soil itself as well as by high concentrations of ions in soil extractants. Adoption of automated, on-the-go sensing of soil nutrients would be enhanced if a single extracting solution could be used for the concurrent extraction of multiple soil macronutrients. This paper reports on the ability of the Kelowna extractant to extract macronutrients (N, P, and K) from US Corn Belt soils and whether previously developed PVC-based nitrate and potassium ion-selective electrodes could determine the nitrate and potassium concentrations in soil extracts obtained using the Kelowna extractant. The extraction efficiencies of nitrate-N and phosphorus obtained with the Kelowna solution for seven US Corn Belt soils were comparable to those obtained with IM KCI and Mehlich III solutions when measured with automated ion and ICP analyzers, respectively. However, the potassium levels extracted with the Kelowna extractant were, on average, 42% less than those obtained with the Mehlich III solution. Nevertheless, it was expected that Kelowna could extract proportional amounts of potassium ion due to a strong linear relationship ($r^2$ = 0.96). Use of the PVC-based nitrate and potassium ion-selective electrodes proved to be feasible in measuring nitrate-N and potassium ions in Kelowna - soil extracts with almost 1 : 1 relationships and high coefficients of determination ($r^2$ > 0.9) between the levels of nitrate-N and potassium obtained with the ion-selective electrodes and standard analytical instruments.

Nitrate Removal Rate in Reed Wetland Cells of a Pond-Wetland Stream Water Treatment System (하천수정화 연못-습지 시스템의 갈대 습지셀 초기 질산성질소 제거)

  • Yang, Hong-Mo
    • Korean Journal of Environmental Agriculture
    • /
    • v.21 no.4
    • /
    • pp.274-278
    • /
    • 2002
  • Nitrate removal rate in three wetland cells was examined. The acreage of each cell was 150 $m^2$. They were a part of a stream water treatment demonstration system which was composed of two ponds and six wetland cells. Earth works far the pond-wetland system were finished from April 2000 to May 2000 and reeds were planted in the three cells in May 2001. Waters of Sinyang Stream flowing into Kohung Esturiane Lake located southern coastal area of Korean Peninsula were pumped into a primary pont Effluents from a secondary pond were funneled into the three cells. Volumes and water quality of inflow and outflow were analyzed from July 2001 through December 2001. Inflow and outflow averaged 20 $m^3/d$ and 19.3 $m^3/d$, respectively. Hydraulic retention time was 1.5 days. Average influent and effluent nitrate concentration was 2.30 mg/L, 1.75 mg/L, respectively. Nitrate removal rate in the three cells averaged 80.9 $mg/m^2/day$. Seasonal changes of nitrate retention rates were closely related to those of wetland temperatures. Full growth of reeds within a few years can develope litter-soil substrates beneficial to the denitrification of nitrate, which may lead to increases of the nitrate retention rates.

Effects of nitrgen source and rate on the growth of the sesame-wilt fungus, Fusarium oxysporum f. vasinfectum (Atk). Snyder et Hansen (질소원의 종류 및 농도가 참깨 위조병균(Fusarium oxysporum f. vasinfectum)의 생육에 미치는 영향)

  • Park Jong Seong
    • Korean journal of applied entomology
    • /
    • v.2
    • /
    • pp.16-21
    • /
    • 1963
  • The present study was undertaken to investigate the effects of different nitrogen source and rate on the growth of Fusarium oxysporum f. vasinfectum which is known to be a noticeable fungus causing the wilt disease of both sesame and cotton in Korea. From the results of this study, It was known that different N source and rate markedly affect the growth of Fusarium oxyspsrum f. vasinfectum Among four N sourses were used in this study, nitrate-N and urea-N were appropriate N source for the growth of fungus. Above all, nitrate N was the best N source because it is utilized in more extensive range of concentration in comparison with the other N source by the fungus, On the other hand, ammonia-N is of little avail for the growth of the fungus because of the formation of unusual colonies with wavy margin and bead-like mycelial cells in addition to marked reduction of mycelial growth and B sporulation of the fungus irrespective of concentration. Judging from the formation of such an abnormal colony and bead-like mycelial cell which is known to be a characteristic of 'staling-type' growth of fungi, the effect of ammonia-N on the growth of Fusarium oxysporum f. vasinfectum is similar to that of phenoxy componnds on some other fungi previously investigated by some workers. Ammonium and nitrate also was not considered to be an appropriate source for the growth of the fungus because of the formation of colonies with slight wavy margin and appreciable reduction of mycelial growth and sporulation in higher concentration than 50meq. , although much or less masking of the irregularity of colony occurs. Therefore, ammonia N alone or any other N combined with ammonia N is of little avail for the growth of Fusarium oxysporum f. vasinfectum.

  • PDF

Effects of Nitrogen Addition on Soil Respiration (상수리나무림 임상에 공급한 무기질소가 토양호흡에 미치는 영향)

  • 최주섭;문형태
    • The Korean Journal of Ecology
    • /
    • v.27 no.3
    • /
    • pp.155-159
    • /
    • 2004
  • In order to gain a better understanding of how forests participate in the cycling of carbon, effects of nitrogen addition on soil respiration were investigated on the oak forest in Kongju, Korea. Study site was divided into control, treatment f and treatment 2 plots, with 5 replication in each plot. In each replicate of treatment 1 and treatment 2 were fertilized with ammonium nitrate (NH$_4$NO$_3$), 30 g/$m^2$ and 60 g/$m^2$, respectively. Soil respiration, soil temperature, ammonium-N and nitrate-N were measured during the experimental period. Ammonium-N and nitrate-N in Ta were higher than those in control and T$_1$. Ammonium-N and nitrate-N in top-soil and sub-soil decreased sharply in August after bi9 rainfall in July in T$_1$ and T$_2$, however, those in control plot increased. Soil respiration in T$_2$ Plot showed consistently higher than those in control and T$_1$ until the end of July. However, soil respiration was similar among the control, T$_1$ and T$_2$ in mid-August and September The amount of Co$_2$ released from soil respiration in control, T$_1$ and T$_2$ in mid-August was 8.0$\pm$0.4, 9.3$\pm$0.6 and 10.2$\pm$0.5 $\mu$mol$^{-1}$ ㆍm$^{-2}$ ㆍs$^{-1}$ , respectively. However, those in control, T$_1$ and T$_2$in mid-August was 13.0$\pm$0.4, 13.5$\pm$0.5, 13.3$\pm$0.6 $\mu$mol$^{-1}$ ㆍm$^{-2}$$^{-1}$ , respectively. The results suggest that nitrogen addition in this oak forest has a positive effect on soil respiration.

The Removal of the Phosphorus by DNPAOs According to the Loading of the Influent NO3-N in Anoxic Zone (무산소조 NO3-N 농도 변화에 따른 DNPAOs에 의한 인 제거)

  • Kim, Hong-Tae;Kim, Kyeong-Ho
    • Journal of Environmental Science International
    • /
    • v.16 no.11
    • /
    • pp.1271-1277
    • /
    • 2007
  • This study was conducted to investigate the ratios of phosphorus release to COD uptake, phosphorus release to nitrate removal, and phosphorus uptake to phosphorus release by DNPAOs(denitrifying phosphate accumulating organisms). In case $I{\sim}IV$, influent 1 were fed with synthetic wastewater with influent 2 $NO_3^--N$ injection to anoxic zone and the case V were fed with municipal wastewater with side stream oxic zone instead of influent 2 $NO_3^--N$ injection. As a result, the ratio of phosphorus release to carbon uptake was increased in accordance with nitrate supply. The DNPAOs simultaneously took up phosphate and removed nitrate from the anoxic reactor. In case $I{\sim}IV$, with above 20 mg/L of sufficient $NO_3^--N$ supply, phosphate was taken up excessively by the DNPAOs in anoxic condition. The large amount of both uptake and release of phosphorus occurred above 20 mg/L of nitrate supply, achieving the ratio of phosphorus uptake to phosphorus release to be 1.05. In case V, phosphate luxury uptake was not occurred in system due to 6.98 mg/L of insufficient $NO_3^--N$ supply and the ratio of phosphorus uptake to phosphorus release was 0.98. Consequently, if nitrate as the electron acceptor was sufficient in anoxic zone, the ratio was found to be high.

Pseudomonas oleovorans의 유가식 배양에 의한 medium chain length Polyhydroxyalkanoates (MCL-PHA) 생산

  • Kim, Beom-Su;Im, Hui-Yeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.207-210
    • /
    • 2000
  • Pseudomonas oleovorans was cultivated to produce medium chain length polyhydroxyalkanoates (MCL-PHA) fram octanoic acid and ammonium nitrate as carbon and nitrogen source, respectively, by a pH-stat fed-batch culture technique. The octanoate concentration of the culture broth was maintained below 4 g/L by feeding the mixture of octanoic acid and ammonium nitrate when the culture pH rose above high limit. The effect of the ratio of octanoic acid to ammonium nitrate (C/N ratio) in the feed on the PHA production was examined. The final cell concentrations of 62.5, 54.7, and 9.5 g/L, PHA contents of 62.9, 75.1, and 67.6% of dry cell weight, and productivities of 1.03, 0.632, and 0.161 g/L/h were obtained when the C/N ratio in the feed were 10, 20, and 100 g octanoic acid/g ammonium nitrate, respectively.

  • PDF