DOI QR코드

DOI QR Code

Nitrate enhances the secondary growth of storage roots in Panax ginseng

  • Kyoung Rok Geem (Department of Biology, Chungbuk National University) ;
  • Jaewook Kim (Department of Biological Sciences, Chungnam National University) ;
  • Wonsil Bae (Department of Biology, Chungbuk National University) ;
  • Moo-Geun Jee (Ginseng & Medicinal Plant Research Institute, Chungnam Agricultural Research & Extention Service) ;
  • Jin Yu (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Inbae Jang (Department of Herbal Crop Research, National Institute of Horticultural and Herbal Science, Rural Development Administration) ;
  • Dong-Yun Lee (Korea Ginseng Corporation, R&D Headquarters) ;
  • Chang Pyo Hong (Theragen Bio Co., Ltd) ;
  • Donghwan Shim (Department of Biological Sciences, Chungnam National University) ;
  • Hojin Ryu (Department of Biology, Chungbuk National University)
  • Received : 2022.01.07
  • Accepted : 2022.05.23
  • Published : 2023.05.01

Abstract

Background: Nitrogen (N) is an essential macronutrient for plant growth and development. To support agricultural production and enhance crop yield, two major N sources, nitrate and ammonium, are applied as fertilizers to the soil. Although many studies have been conducted on N uptake and signal transduction, the molecular genetic mechanisms of N-mediated physiological roles, such as the secondary growth of storage roots, remain largely unknown. Methods: One-year-old P. ginseng seedlings treated with KNO3 were analyzed for the secondary growth of storage roots. The histological paraffin sections were subjected to bright and polarized light microscopic analysis. Genome-wide RNA-seq and network analysis were carried out to dissect the molecular mechanism of nitrate-mediated promotion of ginseng storage root thickening. Results: Here, we report the positive effects of nitrate on storage root secondary growth in Panax ginseng. Exogenous nitrate supply to ginseng seedlings significantly increased the root secondary growth. Histological analysis indicated that the enhancement of root secondary growth could be attributed to the increase in cambium stem cell activity and the subsequent differentiation of cambium-derived storage parenchymal cells. RNA-seq and gene set enrichment analysis (GSEA) revealed that the formation of a transcriptional network comprising auxin, brassinosteroid (BR)-, ethylene-, and jasmonic acid (JA)-related genes mainly contributed to the secondary growth of ginseng storage roots. In addition, increased proliferation of cambium stem cells by a N-rich source inhibited the accumulation of starch granules in storage parenchymal cells. Conclusion: Thus, through the integration of bioinformatic and histological tissue analyses, we demonstrate that nitrate assimilation and signaling pathways are integrated into key biological processes that promote the secondary growth of P. ginseng storage roots.

Keywords

Acknowledgement

This work was supported by the Research Program 2020 and 2021 of the Korean Society of Ginseng.

References

  1. Hu SY. The genusPanax (ginseng) in Chinese medicine. Econ Bot 1976;30:11-28.  https://doi.org/10.1007/BF02866780
  2. Mahady GB, Gyllenhall C, Fong HH, Farnsworth NR. Ginsengs: a review of safety and efficacy. Nutr Clin Care 2000;3:90-101.  https://doi.org/10.1046/j.1523-5408.2000.00020.x
  3. Qi LW, Wang CZ, Yuan CS. Isolation and analysis of ginseng: advances and challenges. Nat Prod Rep 2011;28(3):467-95.  https://doi.org/10.1039/c0np00057d
  4. Kang S, Min H. Ginseng, the 'immunity boost': the effects of Panax ginseng on immune system. J Ginseng Res 2012;36(4):354-68.  https://doi.org/10.5142/jgr.2012.36.4.354
  5. Choi HI, Waminal NE, Park HM, Kim NH, Choi BS, Park M, et al. Major repeat components covering one-third of the ginseng (Panax ginseng C.A. Meyer) genome and evidence for allotetraploidy. Plant J 2014;77(6):906-16.  https://doi.org/10.1111/tpj.12441
  6. Robertson GP, Vitousek PM. Nitrogen in agriculture: balancing the cost of an essential resource. Annu Rev Environ Resour 2009;34:97-125.  https://doi.org/10.1146/annurev.environ.032108.105046
  7. Fredes I, Moreno S, Diaz FP, Gutierrez RA. Nitrate signaling and the control of Arabidopsis growth and development. Curr Opin Plant Biol 2019;47:112-8.  https://doi.org/10.1016/j.pbi.2018.10.004
  8. Wang G-L, Que F, Xu Z, Wang F, Xiong A. Exogenous gibberellin altered morphology, anatomic and transcriptional regulatory networks of hormones in carrot root and shoot. BMC Plant Biol 2015;15:290. 
  9. Zhao LF, Liu F, Crawford NM, Wang Y. Molecular regulation of nitrate responses in plants. Int J Mol Sci 2018;19(7). 
  10. Zhang H, Forde BG. An Arabidopsis MADS box gene that controls nutrient-induced changes in root architecture. Science 1998;279:407-9.  https://doi.org/10.1126/science.279.5349.407
  11. Lima JE, Kojima S, Takahashi H, von Wiren N. Ammonium triggers lateral root branching in Arabidopsis in an AMMONIUM transporter1;3-dependent manner. Plant Cell 2010;22(11):3621-33.  https://doi.org/10.1105/tpc.110.076216
  12. Vega A, O'Brien JA, Gutierrez RA. Nitrate and hormonal signaling crosstalk for plant growth and development. Curr Opin Plant Biol 2019;52:155-63.  https://doi.org/10.1016/j.pbi.2019.10.001
  13. Lam HM, Coschigano KT, Oliveira IC, MeloOliveira R, Coruzzi GM. The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol 1996;47:569-93.  https://doi.org/10.1146/annurev.arplant.47.1.569
  14. Foyer CH, Noctor G, Hodges M. Respiration and nitrogen assimilation: targeting mitochondria-associated metabolism as a means to enhance nitrogen use efficiency. J Exp Bot 2011;62(4):1467-82.  https://doi.org/10.1093/jxb/erq453
  15. Hong CP, Kim J, Lee J, Yoo SI, Bae W, Geem KR, et al. Gibberellin signaling promotes the secondary growth of storage roots in Panax ginseng. Int J Mol Sci 2021;22(16). 
  16. Bjorklund S, Antti H, Uddestrand I, Moritz T, Sundberg B. Cross-talk between gibberellin and auxin in development of Populus wood: gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 2007;52(3):499-511.  https://doi.org/10.1111/j.1365-313X.2007.03250.x
  17. Matsumoto-Kitano M, Kusumoto T, Tarkowski P, Kinoshita-Tsujimura K, Vaclavikova K, Miyawaki K, et al. Cytokinins are central regulators of cambial activity. P Natl Acad Sci USA 2008;105(50):20027-31.  https://doi.org/10.1073/pnas.0805619105
  18. Agusti J, Herold S, Schwarz M, Sanchez P, Ljung K, Dun EA, et al. Strigolactone signaling is required for auxin-dependent stimulation of secondary growth in plants. P Natl Acad Sci USA 2011;108(50):20242-7.  https://doi.org/10.1073/pnas.1111902108
  19. Mauriat M, Moritz T. Analyses of GA20ox- and GID1-over-expressing aspen suggest that gibberellins play two distinct roles in wood formation. Plant J 2009;58(6):989-1003.  https://doi.org/10.1111/j.1365-313X.2009.03836.x
  20. Denis E, Kbiri N, Mary V, Claisse G, Silva NCE, Kreis M, et al. WOX14 promotes bioactive gibberellin synthesis and vascular cell differentiation in Arabidopsis. Plant J 2017;90(3):560-72.  https://doi.org/10.1111/tpj.13513
  21. Ristova D, Carre C, Pervent M, Medici A, Kim GJ, Scalia D, et al. Combinatorial interaction network of transcriptomic and phenotypic responses to nitrogen and hormones in the Arabidopsis thaliana root. Sci Signal 2016;9(451). 
  22. Vidal EA, Araus V, Lu C, Parry G, Green PJ, Coruzzi GM, et al. Nitrate-responsive miR 393/AFB3 regulatory module controls root system architecture in Arabidopsis thaliana. P Natl Acad Sci USA 2010;107(9):4477-82.  https://doi.org/10.1073/pnas.0909571107
  23. Chen XB, Yao QF, Gao XH, Jiang CF, Harberd NP, Fu XD. Shoot-to-Root mobile transcription factor HY5 coordinates plant carbon and nitrogen acquisition. Curr Biol 2016;26(5):640-6.  https://doi.org/10.1016/j.cub.2015.12.066
  24. Cluis CP, Mouchel CF, Hardtke CS. The Arabidopsis transcription factor HY5 integrates light and hormone signaling pathways. Plant J 2004;38(2):332-47.  https://doi.org/10.1111/j.1365-313X.2004.02052.x
  25. Schmieder R, Edwards R. Quality control and preprocessing of metagenomic datasets. Bioinformatics 2011;27(6):863-4.  https://doi.org/10.1093/bioinformatics/btr026
  26. Langmead B, Salzberg SL. Fast gapped-read alignment with Bowtie 2. Nat Methods 2012;9(4). 357-U54. 
  27. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without a reference genome. BMC Bioinf 2011;12. 
  28. Robinson MD, McCarthy DJ, Smyth GK. edgeR: a Bioconductor package for differential expression analysis of digital gene expression data. Bioinformatics 2010;26(1):139-40.  https://doi.org/10.1093/bioinformatics/btp616
  29. Haas BJ, Papanicolaou A, Yassour M, Grabherr M. Blood PD, Bowden J, et al. De novo transcript sequence reconstruction from RNA-seq using the Trinity platform for reference generation and analysis. Nat Protoc 2013;8(8):1494-512.  https://doi.org/10.1038/nprot.2013.084
  30. Huang DW, Sherman BT, Lempicki RA. Systematic and integrative analysis of large gene lists using DAVID bioinformatics resources. Nat Protoc 2009;4(1):44-57.  https://doi.org/10.1038/nprot.2008.211
  31. Huang DW, Sherman BT, Lempicki RA. Bioinformatics enrichment tools: paths toward the comprehensive functional analysis of large gene lists. Nucleic Acids Res 2009;37(1):1-13.  https://doi.org/10.1093/nar/gkn923
  32. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert BL, Gillette MA, et al. Gene set enrichment analysis: a knowledge-based approach for interpreting genome-wide expression profiles. P Natl Acad Sci USA 2005;102(43):15545-50.  https://doi.org/10.1073/pnas.0506580102
  33. Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, et al. Cytoscape: a software environment for integrated models of biomolecular interaction networks. Genome Res 2003;13(11):2498-504.  https://doi.org/10.1101/gr.1239303
  34. Montojo J, Zuberi K, Rodriguez H, Kazi F, Wright G, Donaldson SL, et al. GeneMANIA Cytoscape plugin: fast gene function predictions on the desktop. Bioinformatics 2010;26(22):2927-8.  https://doi.org/10.1093/bioinformatics/btq562
  35. Wickham H. ggplot2: elegant graphics for data analysis. Springer-Verlag New York. ISBN 978-3-319-24277-4. 
  36. Smetana O, Makila R, Lyu M, Amiryousefi A, Rodriguez FS, Wu MF, et al. High levels of auxin signalling define the stem-cell organizer of the vascular cambium. Nature 2019;565(7740):485-+. 
  37. Tian HY, Lv BS, Ding TT, Bai MY, Ding ZJ. Auxin-BR interaction regulates plant growth and development. Front Plant Sci 2018;8. 
  38. Hwang H, Lee HY, Ryu H, Cho H. Functional characterization of BRASSINAZOLE-RESISTANT 1 in Panax ginseng (PgBZR1) and brassinosteroid response during storage root formation. Int J Mol Sci 2020;21(24). 
  39. Zhang J, Eswaran G, Alonso-Serra J, Kucukoglu M, Xiang JL, Yang WB, et al. Transcriptional regulatory framework for vascular cambium development in Arabidopsis roots. Native Plants 2019;5(10):1033-42.  https://doi.org/10.1038/s41477-019-0522-9
  40. Lee J, Kim H, Park SG, Hwang H, Yoo SI, Bae W, Kim E, Kim J, Lee HY, Heo TY, Kang KK, Lee Y, Hong CP, Cho H, Ryu H. Brassinosteroid-BZR1/2-WAT1 module determines the high level of auxin signalling in vascular cambium during wood formation. New Phytol 2021 May;230(4):1503-16. https://doi.org/10.1111/nph.17265. 
  41. Love J, Bjorklund S, Vahala J, Hertzberg M, Kangasjarvi J, Sundberg B. Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. P Natl Acad Sci USA 2009;106(14):5984-9.  https://doi.org/10.1073/pnas.0811660106
  42. Wang YY, Cheng YH, Chen KE, Tsay YF. Nitrate transport, signaling, and use efficiency. Annu Rev Plant Biol 2018;69:85-122.  https://doi.org/10.1146/annurev-arplant-042817-040056
  43. Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, et al. Cytokinin signaling regulates cambial development in poplar. P Natl Acad Sci USA 2008;105(50):20032-7.  https://doi.org/10.1073/pnas.0805617106
  44. Liu JX, An X, Cheng L, Chen FJ, Bao JA, Yuan LX, et al. Auxin transport in maize roots in response to localized nitrate supply. Ann Bot-London 2010;106(6):1019-26.  https://doi.org/10.1093/aob/mcq202
  45. Krouk G, Lacombe B, Bielach A, Perrine-Walker F, Malinska K, Mounier E, et al. Nitrate-regulated auxin transport by NRT1.1 defines a mechanism for nutrient sensing in plants. Dev Cell 2010;18(6):927-37.  https://doi.org/10.1016/j.devcel.2010.05.008
  46. Kang A, Zhang N, Xun W, Dong X, Xiao M, Liu Z, et al. Nitrogen fertilization modulates beneficial rhizosphere interactions through signaling effect of nitric oxide. Plant Physiol 2022;188(2):1129-40. https://doi.org/10.1093/plphys/kiab555.