• 제목/요약/키워드: nilpotent matrix

검색결과 23건 처리시간 0.024초

ON NILPOTENT-DUO RINGS

  • Piao, Zhelin
    • 충청수학회지
    • /
    • 제32권4호
    • /
    • pp.401-408
    • /
    • 2019
  • A ring R is called right (resp., left) nilpotent-duo if N(R)a ⊆ aN(R) (resp., aN(R) ⊆ N(R)a) for every a ∈ R, where N(R) is the set of all nilpotents in R. In this article we provide other proofs of known results and other computations for known examples in relation with right nilpotent-duo property. Furthermore we show that the left nilpotent-duo property does not go up to a kind of matrix ring.

SUMS OF TRIPOTENT AND NILPOTENT MATRICES

  • Abdolyousefi, Marjan Sheibani;Chen, Huanyin
    • 대한수학회보
    • /
    • 제55권3호
    • /
    • pp.913-920
    • /
    • 2018
  • Let R be a 2-primal strongly 2-nil-clean ring. We prove that every square matrix over R is the sum of a tripotent and a nilpotent matrices. The similar result for rings of bounded index is proved. We thereby provide a large class of rings over which every matrix is the sum of a tripotent and a nilpotent matrices.

CANONICAL FORM OF AN TRANSITIVE INTUITIONISTIC FUZZY MATRICES

  • LEE, HONG-YOUL;JEONG, NAE-GYEONG
    • 호남수학학술지
    • /
    • 제27권4호
    • /
    • pp.543-550
    • /
    • 2005
  • Some properties of a transitive fuzzy matrix are examined and the canonical form of the transitive fuzzy matrix is given using the properties. As a special case an open problem concerning idempotent matrices is solved. Thus we have the same result in a intuitionistic fuzzy matrix theory. In our results a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix play an important role. We decompose a transitive intuitionistic fuzzy matrix into sum of a nilpotent intuitionistic matrix and a symmetric intuitionistic matrix. Then we obtain a canonical form of the transitive intuitionistic fuzzy matrix.

  • PDF

GEODESIC FORMULA OF A CERTAIN CLASS OF PSEUDORIEMANNIAN 2-STEP NILPOTENT GROUPS AND JACOBI OPERATORS ALONG GEODESICS IN PSEUDORIEMANNIAN 2-STEP NILPOTENT GROUPS

  • Min, B.;Jang, C.;Park, K.
    • East Asian mathematical journal
    • /
    • 제26권5호
    • /
    • pp.607-614
    • /
    • 2010
  • In this paper, we obtain geodesic formula of a certain class of Pseudoriemmanian 2-step nilpotent groups and show a constancy of represenation matrix of Jacobi oprerators along geodesics in Pseudoriemmanian 2-step nilpotent groups with one dimensional center.

ON COMMUTATIVITY OF NILPOTENT ELEMENTS AT ZERO

  • Abdul-Jabbar, Abdullah M.;Ahmed, Chenar Abdul Kareem;Kwak, Tai Keun;Lee, Yang
    • 대한수학회논문집
    • /
    • 제32권4호
    • /
    • pp.811-826
    • /
    • 2017
  • The reversible property of rings was initially introduced by Habeb and plays a role in noncommutative ring theory. In this note we study the reversible ring property on nilpotent elements, introducing the concept of commutativity of nilpotent elements at zero (simply, a CNZ ring) as a generalization of reversible rings. We first find the CNZ property of 2 by 2 full matrix rings over fields, which provides a basis for studying the structure of CNZ rings. We next observe various kinds of CNZ rings including ordinary ring extensions.

ON WEAKLY LEFT QUASI-COMMUTATIVE RINGS

  • Kim, Dong Hwa;Piao, Zhelin;Yun, Sang Jo
    • 대한수학회논문집
    • /
    • 제32권3호
    • /
    • pp.503-509
    • /
    • 2017
  • We in this note consider a generalized ring theoretic property of quasi-commutative rings in relation with powers. We will use the terminology of weakly left quasi-commutative for the class of rings satisfying such property. The properties and examples are basically investigated in the procedure of studying idempotents and nilpotent elements.

A STRUCTURE ON COEFFICIENTS OF NILPOTENT POLYNOMIALS

  • Jeon, Young-Cheol;Lee, Yang;Ryu, Sung-Ju
    • 대한수학회지
    • /
    • 제47권4호
    • /
    • pp.719-733
    • /
    • 2010
  • We observe a structure on the products of coefficients of nilpotent polynomials, introducing the concept of n-semi-Armendariz that is a generalization of Armendariz rings. We first obtain a classification of reduced rings, proving that a ring R is reduced if and only if the n by n upper triangular matrix ring over R is n-semi-Armendariz. It is shown that n-semi-Armendariz rings need not be (n+1)-semi-Armendariz and vice versa. We prove that a ring R is n-semi-Armendariz if and only if so is the polynomial ring over R. We next study interesting properties and useful examples of n-semi-Armendariz rings, constructing various kinds of counterexamples in the process.

ON COEFFICIENTS OF NILPOTENT POLYNOMIALS IN SKEW POLYNOMIAL RINGS

  • Nam, Sang Bok;Ryu, Sung Ju;Yun, Sang Jo
    • Korean Journal of Mathematics
    • /
    • 제21권4호
    • /
    • pp.421-428
    • /
    • 2013
  • We observe the basic structure of the products of coefficients of nilpotent (left) polynomials in skew polynomial rings. This study consists of a process to extend a well-known result for semi-Armendariz rings. We introduce the concept of ${\alpha}$-skew n-semi-Armendariz ring, where ${\alpha}$ is a ring endomorphism. We prove that a ring R is ${\alpha}$-rigid if and only if the n by n upper triangular matrix ring over R is $\bar{\alpha}$-skew n-semi-Armendariz. This result are applicable to several known results.