• Title/Summary/Keyword: nil ideal

Search Result 22, Processing Time 0.023 seconds

NIL SUBSETS IN BCH-ALGEBRAS

  • Jun, Young-Bae;Roh, Eun-Hwan
    • East Asian mathematical journal
    • /
    • v.22 no.2
    • /
    • pp.207-213
    • /
    • 2006
  • Using the notion of nilpotent elements, the concept of nil subsets is introduced, and related properties are investigated. We show that a nil subset on a subalgebra (resp. (closed) ideal) is a subalgebra (resp. (closed) ideal). We also prove that in a nil algebra every ideal is a subalgebra.

  • PDF

A note on k-nil radicals in BCI-algebras

  • Hong, Sung-Min;Xiaolong Xin
    • Bulletin of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.205-209
    • /
    • 1997
  • Hong et al. [2] and Jun et al. [4] introduced the notion of k-nil radical in a BCI-algebra, and investigated its some properties. In this paper, we discuss the further properties on the k-nil radical. Let A be a subset of a BCI-algebra X. We show that the k-nil radical of A is the union of branches. We prove that if A is an ideal then the k-nil radical [A;k] is a p-ideal of X, and that if A is a subalgebra, then the k-nil radical [A;k] is a closed p-ideal, and hence a strong ideal of X.

  • PDF

On Rings Containing a Non-essential nil-Injective Maximal Left Ideal

  • Wei, Junchao;Qu, Yinchun
    • Kyungpook Mathematical Journal
    • /
    • v.52 no.2
    • /
    • pp.179-188
    • /
    • 2012
  • We investigate in this paper rings containing a non-essential $nil$-injective maximal left ideal. We show that if R is a left MC2 ring containing a non-essential $nil$-injective maximal left ideal, then R is a left $nil$-injective ring. Using this result, some known results are extended.

k-NIL RADICAL IN BCI-ALGEBRAS II

  • Jun, Y.B;Hong, S.M
    • Communications of the Korean Mathematical Society
    • /
    • v.12 no.3
    • /
    • pp.499-505
    • /
    • 1997
  • This paper is a continuation of [3]. We prove that if A is quasi-associative (resp. an implicative) ideal of a BCI-algebra X then the k-nil radical of A is a quasi-associative (resp. an implicative) ideal of X. We also construct the quotient algebra $X/[Z;k]$ of a BCI-algebra X by the k-nhil radical [A;k], and show that if A and B are closed ideals of BCI-algebras X and Y respectively, then

  • PDF

NILPOTENCY INDEX OF NIL-ALGEBRA OF NIL-INDEX 3

  • LEE WOO
    • Journal of applied mathematics & informatics
    • /
    • v.20 no.1_2
    • /
    • pp.569-573
    • /
    • 2006
  • Nagata and Higman proved that any nil-algebra of finite nilindex is nilpotent of finite index. The Nagata-Higman Theorem can be formulated in terms of T-ideals. TheT-ideal generated by $a^n$ for all $a{\in}A$ is also generated by the symmetric polynomials. The symmetric polynomials play an importmant role in analyzing nil-algebra. We construct the incidence matrix with the symmetric polynomials. Using this incidence matrix, we determine the nilpotency index of nil-algebra of nil-index 3.

SYMMETRICITY AND REVERSIBILITY FROM THE PERSPECTIVE OF NILPOTENTS

  • Harmanci, Abdullah;Kose, Handan;Ungor, Burcu
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.209-227
    • /
    • 2021
  • In this paper, we deal with the question that what kind of properties does a ring gain when it satisfies symmetricity or reversibility by the way of nilpotent elements? By the motivation of this question, we approach to symmetric and reversible property of rings via nilpotents. For symmetricity, we call a ring R middle right-(resp. left-)nil symmetric (mr-nil (resp. ml-nil) symmetric, for short) if abc = 0 implies acb = 0 (resp. bac = 0) for a, c ∈ R and b ∈ nil(R) where nil(R) is the set of all nilpotent elements of R. It is proved that mr-nil symmetric rings are abelian and so directly finite. We show that the class of mr-nil symmetric rings strictly lies between the classes of symmetric rings and weak right nil-symmetric rings. For reversibility, we introduce left (resp. right) N-reversible ideal I of a ring R if for any a ∈ nil(R), b ∈ R, being ab ∈ I implies ba ∈ I (resp. b ∈ nil(R), a ∈ R, being ab ∈ I implies ba ∈ I). A ring R is called left (resp. right) N-reversible if the zero ideal is left (resp. right) N-reversible. Left N-reversibility is a generalization of mr-nil symmetricity. We exactly determine the place of the class of left N-reversible rings which is placed between the classes of reversible rings and CNZ rings. We also obtain that every left N-reversible ring is nil-Armendariz. It is observed that the polynomial ring over a left N-reversible Armendariz ring is also left N-reversible.

ON ϕ-PSEUDO ALMOST VALUATION RINGS

  • Esmaeelnezhad, Afsaneh;Sahandi, Parviz
    • Bulletin of the Korean Mathematical Society
    • /
    • v.52 no.3
    • /
    • pp.935-946
    • /
    • 2015
  • The purpose of this paper is to introduce a new class of rings that is closely related to the classes of pseudo valuation rings (PVRs) and pseudo-almost valuation domains (PAVDs). A commutative ring R is said to be ${\phi}$-ring if its nilradical Nil(R) is both prime and comparable with each principal ideal. The name is derived from the natural map ${\phi}$ from the total quotient ring T(R) to R localized at Nil(R). A prime ideal P of a ${\phi}$-ring R is said to be a ${\phi}$-pseudo-strongly prime ideal if, whenever $x,y{\in}R_{Nil(R)}$ and $(xy){\phi}(P){\subseteq}{\phi}(P)$, then there exists an integer $m{\geqslant}1$ such that either $x^m{\in}{\phi}(R)$ or $y^m{\phi}(P){\subseteq}{\phi}(P)$. If each prime ideal of R is a ${\phi}$-pseudo strongly prime ideal, then we say that R is a ${\phi}$-pseudo-almost valuation ring (${\phi}$-PAVR). Among the properties of ${\phi}$-PAVRs, we show that a quasilocal ${\phi}$-ring R with regular maximal ideal M is a ${\phi}$-PAVR if and only if V = (M : M) is a ${\phi}$-almost chained ring with maximal ideal $\sqrt{MV}$. We also investigate the overrings of a ${\phi}$-PAVR.

ON 𝜙-SCHREIER RINGS

  • Darani, Ahmad Yousefian;Rahmatinia, Mahdi
    • Journal of the Korean Mathematical Society
    • /
    • v.53 no.5
    • /
    • pp.1057-1075
    • /
    • 2016
  • Let R be a ring in which Nil(R) is a divided prime ideal of R. Then, for a suitable property X of integral domains, we can define a ${\phi}$-X-ring if R/Nil(R) is an X-domain. This device was introduced by Badawi [8] to study rings with zero divisors with a homomorphic image a particular type of domain. We use it to introduce and study a number of concepts such as ${\phi}$-Schreier rings, ${\phi}$-quasi-Schreier rings, ${\phi}$-almost-rings, ${\phi}$-almost-quasi-Schreier rings, ${\phi}$-GCD rings, ${\phi}$-generalized GCD rings and ${\phi}$-almost GCD rings as rings R with Nil(R) a divided prime ideal of R such that R/Nil(R) is a Schreier domain, quasi-Schreier domain, almost domain, almost-quasi-Schreier domain, GCD domain, generalized GCD domain and almost GCD domain, respectively. We study some generalizations of these concepts, in light of generalizations of these concepts in the domain case, as well. Here a domain D is pre-Schreier if for all $x,y,z{\in}D{\backslash}0$, x | yz in D implies that x = rs where r | y and s | z. An integrally closed pre-Schreier domain was initially called a Schreier domain by Cohn in [15] where it was shown that a GCD domain is a Schreier domain.

ON THE STRUCTURE OF ZERO-DIVISOR ELEMENTS IN A NEAR-RING OF SKEW FORMAL POWER SERIES

  • Alhevaz, Abdollah;Hashemi, Ebrahim;Shokuhifar, Fatemeh
    • Communications of the Korean Mathematical Society
    • /
    • v.36 no.2
    • /
    • pp.197-207
    • /
    • 2021
  • The main purpose of this paper is to study the zero-divisor properties of the zero-symmetric near-ring of skew formal power series R0[[x; α]], where R is a symmetric, α-compatible and right Noetherian ring. It is shown that if R is reduced, then the set of all zero-divisor elements of R0[[x; α]] forms an ideal of R0[[x; α]] if and only if Z(R) is an ideal of R. Also, if R is a non-reduced ring and annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R), then Z(R0[[x; α]]) is an ideal of R0[[x; α]]. Moreover, if R is a non-reduced right Noetherian ring and Z(R0[[x; α]]) forms an ideal, then annR(a - b) ∩ Nil(R) ≠ 0 for each a, b ∈ Z(R). Also, it is proved that the only possible diameters of the zero-divisor graph of R0[[x; α]] is 2 and 3.