• Title/Summary/Keyword: nickel plating process

Search Result 77, Processing Time 0.023 seconds

Electroplating process for the chip component external electrode

  • Lee, Jun-Ho
    • Proceedings of the Korean Institute of Surface Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1-2
    • /
    • 2000
  • In chip plating, several parameters must be taken into consideration. Current density, solution concentration, pH, solution temperature, components volume, chip and media ratio, barrel geometrical shape were most likely found to have an effect to the process yields. The 3 types of barrels utilized in chip plating industry are the onventional rotating barrel, vibrational barrel(vibarrel), and the centrifugal type. Conventional rotating barrel is a close type and is commonly used. The components inside the barrel are circulated by the barrel's rotation at a horizontal axis. Process yield has known to have higher thickness deviation. The vibrational barrel is an open type which offers a wide exposure to electrolyte resulting to a stable thickness deviation. It rotates in a vertical axis coupled with multi-vibration action to facilitate mixed up and easy transportation of components. The centrifugal barrel has its plated work centrifugally compacted against the cathode ring for superior electrical contact with simultaneous rotary motion. This experiment has determined the effect of barrel vibration intensity to the plating thickness distribution. The procedures carried out in the experiment involved the overall plating process., cleaning, rinse, Nickel plating, Tin-Lead plating. Plating time was adjusted to meet the required specification. All other parameters were maintained constant. Two trials were performed to confirm the consistency of the result. The thickness data of the experiment conducted showed thatbthe average mean value obtained from higher vibrational intensity is nearer to the standard mean. The distribution curve shown has a narrower specification limits and it has a reduced variation around the target value. Generally, intensity control in vi-barrel facilitates mixed up and easy transportation of components. However, it is desirable to maintain an optimum vibration intensity to prevent solution intrusion into the chips' internal electrode. A cathodic reaction can occur in the interface of the external and internal electrode. 2H20 + e $\rightarrow$M/TEX> 20H + H2.. Hydrogen can penetrate into the body and create pressure which can cause cracks. At high intensity, the chip's motion becomes stronger, its contact between each other is delayed and so plating action is being controlled. However, the strong impact created by its collision can damage the external electrode's structure there by resulting to bad plating condition.

  • PDF

The Limiting Current Density and the Regeneration of a Heterogeneous Ion Exchange Membrane in a Nickel Plating Rinse Waters Treatment Process by Electrodialysis (전기투석에 의한 니켈도금 폐수처리 공정에서 한계전류밀도와 불균질 이온교환막의 재생)

  • 윤용수
    • Journal of environmental and Sanitary engineering
    • /
    • v.16 no.2
    • /
    • pp.38-46
    • /
    • 2001
  • In this work, the heterogeneous ion exchange membrane was used in a electrodialysis apparatus to treat a Ni planting rinse water because the heterogeneous ion exchange membrane was excellent efficiency as compared with low manufacturing cost, was easy to make, and had a good mechanical properties. For a regeneration of membrane and to obtain the optimal condition for a scale-up of apparatus after treating Ni plating rinse water, we would find about the limiting current density and the concentration polarization. When the Ni plating rinse water 150mg/L was treated with the electrodialysis apparatus using the heterogeneous ion exchange membrane, the limiting current density was about $1.49{\;}mA/\textrm{cm}^2$. And the limiting current density increased with the flow rate and concentration of Ni plating rinse water. We recognized that the used membrane could be reused by periodic backwashing because efficiency was constant when the membrane was backwashed after treating wastewater.

  • PDF

Improvement of Electrical Properties by Controlling Nickel Plating Temperatures for All Solid Alumina Capacitors

  • Jeong, Myung-Sun;Ju, Byeong-Kwon;Oh, Young-Jei;Lee, Jeon-Kook
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.25.2-25.2
    • /
    • 2011
  • Recently, thin film capacitors used for vehicle inverters are small size, high capacitance, fast response, and large capacitance. But its applications were made up of liquid as electrolyte, so its capacitors are limited to low operating temperature range and the polarity. This research proposes using Ni-P alloys by electroless plating as the electrode instead of liquid electrode. Our substrate has a high aspect ratio and complicated shape because of anodic aluminum oxide (AAO). We used AAO because film thickness and effective surface area are depended on for high capacitance. As the metal electrode instead of electrolyte is injected into AAO, the film capacitor has advantages high voltage, wide operating temperature, and excellent frequency property. However, thin film capacitor made by electroless-plated Ni on AAO for full-filling into etched tunnel was limited from optimizing the deposition process so as to prevent open-through pore structures at the electroless plating owing to complicated morphological structure. In this paper, the electroless plating parameters are controlled by temperature in electroless Ni plating for reducing reaction rate. The Electrical properties with I-V and capacitance density were measured. By using nickel electrode, the capacitance density for the etched and Ni electroless plated films was 100 nFcm-2 while that for a film without any etch tunnel was 12.5 nFcm-2. Breakdown voltage and leakage current are improved, as the properties of metal deposition by electroless plating. The synthesized final nanostructures were characterized by scanning electron microscopy (SEM).

  • PDF

Influence of Process Variables on Barrel Electroplating (바렐도금에 미치는 공정변수의 영향)

  • 최태규;유황룡;장시성;황운석
    • Journal of the Korean institute of surface engineering
    • /
    • v.35 no.5
    • /
    • pp.295-304
    • /
    • 2002
  • In this study, the effect of the diameter and the number of barrel hole on the total area of barrel hole were calculated and analyzed. And the effects of applied current density, rotational speed of the barrel, size and number of barrel hole, and the volume of plating materials on the distribution of plating thickness were experimented and discussed by the barrel electroplating of the tube type brass specimens in a sulfamate nickel barrel solution. The effect of barrel hole size and barrel hole area on the throwing power was also discussed.

Fabrication process of nickel structures for a electrostatic micro relay (정전형 마이크로 릴레이용 Ni 후막 구조체의 제조공정)

  • Lee, J.H.;Park, K.H.;Lee, Y.I.;Choi, B.Y.;Lee, J.Y.;Choi, S.S.;You, H.J.
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1419-1421
    • /
    • 1995
  • Nickel micro-structures are fabricated by electroless plating which shows better uniformity. Positive resist AZ4562 of 7 um thickness is patterned with minimum width of 2 um on poly-silicon as for sacrificial layer. The growth rate of Ni electroless plating is 10um/h both for the seed layer of Pt and TiW. TiW is found to be more practical than Pt, since it is very difficult to remove Pt with negligible damage to Ni structures.

  • PDF

A Study on the ENIG Surface Finish Process and Its Properties (ENIG 표면처리 공정 및 특성에 관한 연구)

  • Lee, Hong-Kee;Son, Seong-Ho;Lee, Ho-Young;Jeon, Jun-Mi
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.1
    • /
    • pp.32-38
    • /
    • 2007
  • Ni coating layers were formed using a newly developed electroless Ni plating solution. The properties of Ni coating layer such as internal stress, hardness, surface roughness, crystallinity, solderability and surface morphology were investigated using various tools. Results revealed that internal stress decreased with plating time and reached $40N/mm^2$ at 20 minutes of the plating time. Hardness increased with increasing P content and thickness. Surface roughness of the pad decreased with Ni and Ni/Au plating. Crystallinity decreased with increasing P content. Solderability based on wettability decreased with Ni and Ni/Au plating. Based on surface morphology, it is expected that Ni coating layer formed using a newly developed electroless Ni plating solution is lower than that formed using a commercial electroless Ni plating solution in possibility of black pad occurrence.

Removal of mid-frequency error from the off-axis mirror

  • Kim, Sanghyuk;Pak, Soojong;Jeong, Byeongjoon;Shin, Sangkyo;Kim, Geon Hee;Lee, Gil Jae;Chang, Seunghyuk;Yoo, Song Min;Lee, Kwang Jo;Lee, Hyuckee
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.39 no.2
    • /
    • pp.103-103
    • /
    • 2014
  • Manufacturing of lens and mirror using Diamond Turning Machine (DTM) offers distinct advantages including short fabrication time and low cost as compared to grinding or polishing process. However, the DTM process can leave mid-frequency error in the optical surface which generates an undesirable diffraction effect and stray light. The mid-frequency error is expected to be eliminated by mechanical polishing after the DTM process, but polishing of soft surface of ductile aluminum is extremely difficult because the polishing process inevitably degrades the surface form accuracy. In order to increase its surface hardness, we performed electroless nickel plating on the surface of diamond-turned aluminum (Al-6061T6) off-axis mirrors, which was followed by the 6-hour-long baking process at $200^{\circ}C$ for improving its hardness. Then we polished the nickel plated off-axis mirrors to remove the mid-frequency error and measured polished mirror surfaces using the optical surface profilometer (NT 2000, Wyko Inc.). Finally, we ascertained that the mid-frequency error on the mirror surface was successfully removed. During the whole processes of nickel plating and polishing, we monitored the form accuracy using the ultra-high accurate 3-D profilometer (UA3P, Panasonic Corp.) to maintain it within the allowable tolerance range (< tens of nm). The polished off-axis mirror was optically tested using a visible laser source and a pinhole, and the airy pattern obtained from the polished mirror was compared with the unpolished case to check the influence of mid-frequency error on optical images.

  • PDF

A Study on the Pd-Ni Alloy Hydrogen Membrane Using the Sputter Deposition (스퍼터 증착 방식으로 제조된 Pd-Ni 합금 수소 분리막 연구)

  • Kim Dong-Won;Park Jeong-Won;Kim Sang-Ho;Park Jong-Su
    • Journal of the Korean institute of surface engineering
    • /
    • v.37 no.5
    • /
    • pp.243-248
    • /
    • 2004
  • A palladium-nikel(Pd-Ni) alloy composite membrane has been fabricated on microporous nickel support formed with nickel powder. Plasma surface treatment process is introduced as pre-treatment process instead of HCI activation. Pd coating layer was prepared by dc magnetron sputtering deposition after $H_2$ plasma surface treatment. Palladium-nickel alloy composite layer had a fairly uniform and dense surface morphology. The membrane was characterized by permeation experiments with hydrogen and nitrogen gases at temperature of 773 K and pressure of 2.2psi. The hydrogen permeance was 6 ml/minㆍ$\textrm{cm}^2$ㆍatm and the selectivity was 120 for hydrogen/nitrogen($H_2$/$N_2$) mixing gases at 773 K.

Fabrication of Ni Stamper based on Micro-Pyramid Structures for High Uniformity Light Guide Panel (LGP) (마이크로 피라미드 패턴 응용 도광판 제작을 위한 니켈 스탬퍼 제작에 관한 연구)

  • Kim, Seong-Kon;Yoo, Yeong-Eun;Seo, Young-Ho;Jae, Tae-Jin;Whang, Kyung-Hyun;Choi, Doo-Sun
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.23 no.9 s.186
    • /
    • pp.174-178
    • /
    • 2006
  • Pyramid shape of micro pattern is applied to the light guide panel (LGP) to enhance the uniformity of the brightness of the LCD. The micro pyramids are molded in intaglio on the surface of the LGP. The size of each pyramid is 5$\mu$m $\times$ 5$\mu$m on bottom and the height is about 3.5$\mu$m. The pyramids are distributed on the LGP surface randomly to be sparser where the light comes in and denser at the opposite side as a result of a simulation using lightools$^{TM}$ Based on this design, a silicon pattern master and a nickel stamper are fabricated by MEMS process and electro plating process. Intaglio micro pyramids are fabricated on the 6' of silicon wafer from the anisotropic etching using KOH and the process time, temperature of the KOH solution, etc are optimized to obtain precise shape of the pattern. A Wi stamper is fabricated from this pattern master by electro plating process and the embossed pyramid patterns turns out to be well defined on the stamper. Adopting this stamper to the mold base with two cavities, 1.8' and 3.6' LGPs are injection molded.