• Title/Summary/Keyword: new material model

Search Result 1,065, Processing Time 0.027 seconds

An analytical model for inversion layer electron mobility in MOSFET (MOS소자 반전층의 전자이동도에 대한 해석적 모델)

  • 신형순
    • Electrical & Electronic Materials
    • /
    • v.9 no.2
    • /
    • pp.174-179
    • /
    • 1996
  • We present a new physically based analytical equation for electron effective mobility in MOS inversion layers. The new semi-empirical model is accounting expicitly for surface roughness scattering and screened Coulomb scattering in addition to phonon scattering. This model shows excellent agreement with experimentally measured effective mobility data from three different published sources for a wide range of effective transverse field, channel doping and temperature. By accounting for screened Coulomb scattering due to doping impurities in the channel, our model describes very well the roll-off of effective mobility in the low field (threshold) region for a wide range of channel doping level (Na=3.0*10$^{14}$ - 2.8*10$^{18}$ cm$^{-3}$ ).

  • PDF

Prediction of Steady-state Strip Profile during Hot Rolling - PartⅡ: Development of a Mathematical Model (열연 공정 정상상태 판 프로파일 예측 - PartⅡ: 수식 모델 개발)

  • Lee, J. S.;Hwang, S. M.
    • Transactions of Materials Processing
    • /
    • v.25 no.1
    • /
    • pp.61-66
    • /
    • 2016
  • In the current study, we present a new model for the prediction of the strip profile and the residual stresses. This new approach is an analytical model that predicts the residual stresses from the effect of post-deformation. Since the residual stress cannot exceed the yield strength of the material, post-yielding may possibly occur in the post-deformation zone prior to the strip reaching the steady-state zone. The prediction accuracy of the proposed model is examined through comparison with the predictions from 3-D finite element (FE) simulations.

Hypoelastic modeling of reinforced concrete walls

  • Shayanfar, Mohsen A.;Safiey, Amir
    • Computers and Concrete
    • /
    • v.5 no.3
    • /
    • pp.195-216
    • /
    • 2008
  • This paper presents a new hypoelasticity model which was implemented in a nonlinear finite element formulation to analyze reinforced concrete (RC) structures. The model includes a new hypoelasticity constitutive relationship utilizing the rotation of material axis through successive iterations. The model can account for high nonlinearity of the stress-strain behavior of the concrete in the pre-peak regime, the softening behavior of the concrete in the post-peak regime and the irrecoverable volume dilatation at high levels of compressive load. This research introduces the modified version of the common application orthotropic stress-strain relation developed by Darwin and Pecknold. It is endeavored not to violate the principal of "simplicity" by improvement of the "capability" The results of analyses of experimental reinforced concrete walls are presented to confirm the abilities of the proposed relationships.

Scanning System and Reproduction of Adjustable Lower Dental Impression Tray (스캐닝 시스템과 하악용 가변형 트레이의 재현성)

  • Cha, Young-Youp;Eom, Sang-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.254-257
    • /
    • 2011
  • This study was performed to development a dental three-dimensional laser scanning system and measure the accuracy of new adjustable lower dental impression trays. Multiple impressions of a resin master model were made with custom, stock and new adjustable trays and vinyl polysiloxane impression material. The lower master model and resulting cast were compared using an dental scanning system. Each 3D image was superimposed onto the lower master model image and analyzed with custom software. Multiple measurements of the lower master model and casts were analyzed to determine the accuracy of tray types.

An efficient C1 beam element via multi-scale material adaptable shape function

  • El-Ashmawy, A.M.;Xu, Yuanming
    • Advances in nano research
    • /
    • v.13 no.4
    • /
    • pp.351-368
    • /
    • 2022
  • Recently, promising structural technologies like multi-function, ultra-load bearing capacity and tailored structures have been put up for discussions. Finite Element (FE) modelling is probably the best-known option capable of treating these superior properties and multi-domain behavior structures. However, advanced materials such as Functionally Graded Material (FGM) and nanocomposites suffer from problems resulting from variable material properties, reinforcement aggregation and mesh generation. Motivated by these factors, this research proposes a unified shape function for FGM, nanocomposites, graded nanocomposites, in addition to traditional isotropic and orthotropic structural materials. It depends not only on element length but also on the beam's material properties and geometric characteristics. The systematic mathematical theory and FE formulations are based on the Timoshenko beam theory for beam structure. Furthermore, the introduced element achieves C1 degree of continuity. The model is proved to be convergent and free-off shear locking. Moreover, numerical results for static and free vibration analysis support the model accuracy and capabilities by validation with different references. The proposed technique overcomes the issue of continuous properties modelling of these promising materials without discarding older ones. Therefore, introduced benchmark improvements on the FE old concept could be extended to help the development of new software features to confront the rapid progress of structural materials.

Damage-Based Seismic Performance Evaluation of Reinforced Concrete Frames

  • Heo, YeongAe;Kunnath, Sashi K.
    • International Journal of Concrete Structures and Materials
    • /
    • v.7 no.3
    • /
    • pp.175-182
    • /
    • 2013
  • A damage-based approach for the performance-based seismic assessment of reinforced concrete frame structures is proposed. A new methodology for structural damage assessment is developed that utilizes response information at the material level in each section fiber. The concept of the damage evolution is analyzed at the section level and the computed damage is calibrated with observed experimental data. The material level damage parameter is combined at the element, story and structural level through the use of weighting factors. The damage model is used to compare the performance of two typical 12-story frames that have been designed for different seismic requirements. A series of nonlinear time history analyses is carried out to extract demand measures which are then expressed as damage indices using the proposed model. A probabilistic approach is finally used to quantify the expected seismic performance of the building.

A study on the Optimal Condition for Application with Extracorporeal Membrane Oxygenation (ECMO 시스템 적용을 위한 최적화 조건에 관한 연구)

  • Kim, Jae-Yeol;Song, Min-Jong;You, Sin;Ma, Sang-Dong;Kim, Chang-Hyun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.09a
    • /
    • pp.13-18
    • /
    • 2001
  • The ECMO system, including umbilical cord and membrane type oxygenator was connected with extracorporeal circulation unit, was applied to the fetus growth model of goat. The maximum survival time of goat fetus was 48 hours. Average blood rate for the extracorporeal circulation was $223{\pm}15.2 ml/min.$ The survival time of fetus was deeply related to body temperature, blood circulation and water temperature, anesthetized time, and fetus weights. Extern variables that are composed of anesthetized time, fetus weights, change of hemoglobin, circuit pressure, related to the survival time for fetus corrected the problem of previous ECMO model that is controlled by roller pump. It is directly delivered to heart on load. Applying the results from new ECMO model, further research will provide to the system of ECMO for human.

  • PDF

Numerical Simulation of Rehabilitated Flexural RC Member using High Performance Composite (균열제어 기능성 복합재료를 이용한 RC 휨 부재 보강수치해석)

  • 신승교;김태균;임윤묵
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.05a
    • /
    • pp.543-548
    • /
    • 2003
  • In this study, a numerical model is developed using axial deformation link elements that can effectively predict the failure behavior of RC type structures. Using this mod 1, numerical analysis was performed to investigate the strengthening effect and failure behavior of structures repaired with a new material. High-Performance Cementitious Composites, which is characterized by its ductility with 5% strain-capacity is used as a repair material. To investigate the validity of developed numerical model, simulations of direct tension specimen and flexural specimen are performed and the results are compared with published ones. The similar analysis is performed for RC beam. Through this study, it is seen that predicted response has a good agreement with the experimental results. Using this verified numerical model, the strengthening effect of repaired with HPCC structure is analyzed through load-displacement curve and failure modes. Also, the same numerical analysis is performed in RC beam repaired with HPCC. The effect of HPCC ductility is estimated for the overall behavior of structures. Based on the results, the fundamental data are suggested for repaired structures with HPCC.

  • PDF

Shallow P+-n Junction Formation and the Design of Boron Diffusion Simulator (박막 P+-n 접합 형성과 보론 확산 시뮬레이터 설계)

  • 김재영;이충근;김보라;홍신남
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.17 no.7
    • /
    • pp.708-712
    • /
    • 2004
  • Shallow $p^+-n$ junctions were formed by ion implantation and dual-step annealing processes. The dopant implantation was performed into the crystalline substrates using BF$_2$ ions. The annealing was performed with a rapid thermal processor and a furnace. FA+RTA annealing sequence exhibited better junction characteristics than RTA+FA thermal cycle from the viewpoint of junction depth and sheet resistance. A new simulator is designed to model boron diffusion in silicon. The model which is used in this simulator takes into account nonequilibrium diffusion, reactions of point defects, and defect-dopant pairs considering their charge states, and the dopant inactivation by introducing a boron clustering reaction. Using initial conditions and boundary conditions, coupled diffusion equations are solved successfully. The simulator reproduced experimental data successfully.

Modeling of Mixed Phosphors in White Light Emitting Diode (백색 발광다이오드에서의 혼합 형광체 모델링)

  • Kim, Dowoo;Gong, Dayeong;Gong, Myeongkook
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.26 no.7
    • /
    • pp.567-574
    • /
    • 2013
  • An optical model is proposed in the white LED using phosphor and LED chip. In this paper a new model that describes the absorption rate and quantum efficiency with increasing the mixing ratio of phosphor in silicone, and the allotment of the phosphor absorption optical power in the several phosphor mixing in the silicone. Single phosphor in silicone from the optical measurement data before and after molding, the solution to get the blue optical power and the phosphor emission optical power is proposed. By these solution the absorption rate and the quantum efficiency was obtained. The model with single phosphor mixing in the silicone the validity was confirmed.