• Title/Summary/Keyword: neutron scattering

Search Result 131, Processing Time 0.027 seconds

A high-density gamma white spots-Gaussian mixture noise removal method for neutron images denoising based on Swin Transformer UNet and Monte Carlo calculation

  • Di Zhang;Guomin Sun;Zihui Yang;Jie Yu
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.715-727
    • /
    • 2024
  • During fast neutron imaging, besides the dark current noise and readout noise of the CCD camera, the main noise in fast neutron imaging comes from high-energy gamma rays generated by neutron nuclear reactions in and around the experimental setup. These high-energy gamma rays result in the presence of high-density gamma white spots (GWS) in the fast neutron image. Due to the microscopic quantum characteristics of the neutron beam itself and environmental scattering effects, fast neutron images typically exhibit a mixture of Gaussian noise. Existing denoising methods in neutron images are difficult to handle when dealing with a mixture of GWS and Gaussian noise. Herein we put forward a deep learning approach based on the Swin Transformer UNet (SUNet) model to remove high-density GWS-Gaussian mixture noise from fast neutron images. The improved denoising model utilizes a customized loss function for training, which combines perceptual loss and mean squared error loss to avoid grid-like artifacts caused by using a single perceptual loss. To address the high cost of acquiring real fast neutron images, this study introduces Monte Carlo method to simulate noise data with GWS characteristics by computing the interaction between gamma rays and sensors based on the principle of GWS generation. Ultimately, the experimental scenarios involving simulated neutron noise images and real fast neutron images demonstrate that the proposed method not only improves the quality and signal-to-noise ratio of fast neutron images but also preserves the details of the original images during denoising.

Scattering Effectiveness of Monoenergetic Neutrons in the Various Shielding Materials

  • Yoo, Young-Soo
    • Nuclear Engineering and Technology
    • /
    • v.4 no.1
    • /
    • pp.39-45
    • /
    • 1972
  • In neutron shielding, the scattering effect is equally important as the attenuations in shielding materials. In the present study, the scattered dose equivalent was measured using a Rem counter for water, paraffin, borated paraffin, ordinary and heavy concrete, lead, iron, and tissue equivalent material in three different angles: 45$^{\circ}$, 90$^{\circ}$, and 135$^{\circ}$, respectively. The measurements were performed for the neutron, having the energies of 0.5, 1, 2, 5, and 18 MeV, which are produced from the Van do Graaff accelerator. The scattered dose equivalent ratios were increased with increasing the thickness of scattering materials and saturated at a certain thickness although they were different from one to other materials under study. The ratios were large for lead and iron while they were small for the hydrogen containing materials such as water and paraffin etc.

  • PDF

Using the Monte Carlo method to solve the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions

  • Bahram R. Maleki
    • Nuclear Engineering and Technology
    • /
    • v.55 no.1
    • /
    • pp.324-329
    • /
    • 2023
  • Different types of deterministic solution methods were used to solve neutron transport equations corresponding to half-space and slab albedo problems. In these types of solution methods, in addition to the error of the numerical solutions, the obtained results contain truncation and discretization errors. In the present work, a non-analog Monte Carlo method is provided to simulate the half-space and slab albedo problems with Inönü and Anlı-Güngör strongly anisotropic scattering functions. For each scattering function, the sampling method of the direction of the scattered neutrons is presented. The effects of different beams with different angular dependencies and the effects of different scattering parameters on the reflection probability are investigated using the developed Monte Carlo method. The validity of the Monte Carlo method is also confirmed through the comparison with the published data.

중성자 산란을 이용한 나노기공 측정

  • 최성민;이지환;조성민
    • Proceedings of the Korea Crystallographic Association Conference
    • /
    • 2002.11a
    • /
    • pp.51-51
    • /
    • 2002
  • 나노기공물질은 특정 기반물질(matrix) 내부에 대략 나노미터크기의 기공을 함유하고 있는 물질이며 나노기공물질의 특성은 기반물질의 특성과 더불어 기공의 형태, 크기, 분포에 의해서 결정된다. 나노기공물질의 기공에 대한 정보를 측정하는 방법으로는 TEM, 흡착법, FE-SEM과 더불어 중성자 또는 X-ray 빔의 산란을 이용하는 소각중성자산란 (Small-Angle Neutron Scatering, SANS), 소각 X-ray 산란 (Small-Angle X-ray Scattering, SAXS), 중성자반사율측정 (Neutron Relfectimetry, NR), X-ray 반사율측정 (X-Ray Reflectometry, XRR) 등이 사용되고 있다. 본 발표는 대략 1 nm - 100 nm 영역의 bulk 구조와 층상구조를 측정할 수 있는 소각 중성자 산란과 중성자 반사율 측정기법을 이용한 나노기공 측정기술을 다룬다.

  • PDF

Target-Moderator-Reflector system for 10-30 MeV proton accelerator-driven compact thermal neutron source: Conceptual design and neutronic characterization

  • Jeon, Byoungil;Kim, Jongyul;Lee, Eunjoong;Moon, Myungkook;Cho, Sangjin;Cho, Gyuseong
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.633-646
    • /
    • 2020
  • Imaging and scattering techniques using thermal neutrons allow to analyze complex specimens in scientific and industrial researches. Owing to this advantage, there have been a considerable demand for neutron facilities in the industrial sector. Among neutron sources, an accelerator driven compact neutron source is the only one that can satisfy the various requirements-construction budget, facility size, and required neutron flux-of industrial applications. In this paper, a target, moderator, and reflector (TMR) system for low-energy proton-accelerator driven compact thermal neutron source was designed via Monte Carlo simulations. For 10-30 MeV proton beams, the optimal conditions of the beryllium target were determined by considering the neutron yield and the blistering of the target. For a non-borated polyethylene moderator, the neutronic properties were verified based on its thickness. For a reflector, three candidates-light water, beryllium, and graphite-were considered as reflector materials, and the optimal conditions were identified. The results verified that the neutronic intensity varied in the order beryllium > light water > graphite, the compacter size in the order light water < beryllium < graphite and the shorter emission time in the order graphite < light water < beryllium. The performance of the designed TMR system was compared with that of existing facilities and were laid between performance of existing facilities.

Effects of Soil Types and Tillage Systems on Soil Water Movement in the Root Zone of Cornfields (옥수수포장의 토양 수분함량에 대한 토성과 경운의 영향)

  • Kim, Won-Il;Jeong, Goo-Bok;Koh, Mun-Hwan;Huck, M.G.;Park, Ro-Dong
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.35 no.4
    • /
    • pp.197-206
    • /
    • 2002
  • Volumetric soil water contents through a soil profile were monitored to identify the effects of tillage systems and soil physico-chemical characteristic on soil water movement from the soil profile. Water content profiles under no tillage (NT) and conventional tillage (CT) practices were compared at two commercial farms in central Illinois from 1992 through 1994, using neutron-scattering techniques in weekly intervals during each growing season. The volumetric water content of surface soil layers was affected more by tillage systems and rainfall amounts, whereas that of the subsoil layers was more strongly affected by soil types. Soil water percolated faster through Saybrook and Catlin soils than through Drummer, Flanagan, and Ipava soils because Saybrook and Catlin soils have lower clay content and water-retention capacity and higher permeability than Drummer, Flanagan, and Ipava soils. Increased soil organic matter (SOM) in Drummer, Flanagan, and Ipava soils would be attributable to the higher soil water retention than other soil types. Soil water contents in the corn root zone were consistently higher under CT plots than under NT plots.

Phase Analysis of Immiscible V-Cu MA Powders by Neutron and X-ray Diffraction (비고용 V-Cu계 MA합금의 중성자 및 X선 회절에 의한 상분석)

  • Lee Chung-Hyo;Cho Jae-Moon;Lee Sang-Jin;Kim Ji-Soon
    • Korean Journal of Materials Research
    • /
    • v.14 no.5
    • /
    • pp.348-352
    • /
    • 2004
  • The mechanical alloying (MA) effect in immiscible V-Cu system with positive heat of mixing was studied by not only the neutron and X-ray diffraction but also the analysis of DSC spectra. The total energy, ΔHt accumulated during MA for the mixture of $V_{50}$ $Cu_{50}$ / powders increased with milling time and approached the saturation value of 14 kJ/mol after 120 h of milling. It can be seen that the free energy difference between the amorphous phase and the pure V and Cu powders with an atomic ratio 5:5 is estimated to be 11 kJ/mol by Miedema et al. This is thermodynamically taken as one of the evidences for the amorphization. The structural changes of V-Cu MA powders were characterized by the X-ray diffraction and neutron diffraction. We take a full advantage of a negligibly small scattering length of the V atom in the neutron diffraction measurement. The neutron diffraction data definitely indicate that the amorphization proceeds gradually but incompletely even after 120 h of MA and bcc-Cu Bragg peaks appears after 60 h of MA.