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a b s t r a c t

Different types of deterministic solution methods were used to solve neutron transport equations cor-
responding to half-space and slab albedo problems. In these types of solution methods, in addition to the
error of the numerical solutions, the obtained results contain truncation and discretization errors. In the
present work, a non-analog Monte Carlo method is provided to simulate the half-space and slab albedo
problems with In€onü and Anlı-Güng€or strongly anisotropic scattering functions. For each scattering
function, the sampling method of the direction of the scattered neutrons is presented. The effects of
different beams with different angular dependencies and the effects of different scattering parameters on
the reflection probability are investigated using the developed Monte Carlo method. The validity of the
Monte Carlo method is also confirmed through the comparison with the published data.
© 2022 Korean Nuclear Society, Published by Elsevier Korea LLC. This is an open access article under the

CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

The neutron motion and its interactions with nuclei of a me-
dium are described by the neutron transport equations. Except for
some simple cases such as a steady-state neutron transport prob-
lem in a purely absorbing one-dimensional medium, the neutron
transport equations cannot be solved analytically. Monte Carlo
(stochastic) and deterministic methods are extensively used to
solve the neutron transport equations. In deterministic methods,
the angular dependency is approximated either by spherical har-
monic or by discrete ordinate methods; the energy, space, and time
variables are also discretized. In these types of solution methods, in
addition to the error of the numerical solutions, the obtained re-
sults contain truncation and discretization errors as well. In
contrast, in the Monte Carlo simulation methods without using
different types of approximations, the neutronic behavior of the
system is simulated by using the corresponding Probability Dis-
tribution Functions (PDF) in which the neutron’s motion, interac-
tion type, the elapsed time during the interaction, energies of the
generated particles and groups of the generated precursors are
sampled randomly. In these types of problems, because of using
by Elsevier Korea LLC. This is an
random numbers the simulation results always include uncer-
tainty. To reduce the uncertainty and to obtainmore precise results,
different types of variance reduction techniques are taken into
consideration. The deterministic methods are faster but fall short in
addressing the nuclear systems with complex geometries, strong
anisotropy of neutron scattering, and complicated neutron energy
spectrums [1e6].

The one-speed, steady-state, source-free, and azimuthally in-
tegrated neutron transport equation for a one-dimensional and
non-multiplying homogeneous medium with strongly anisotropic
scattering is expressed as follows:

m
vjðz;mÞ

vz
þ St jðz;mÞ ¼

ð1

�1

Ssðm0 /mÞ jðz;m0Þ dm0 (1)

where St is the neutron total macroscopic cross section, m0 and m

represent the direction cosine of the neutron velocity with z-axis
before and after the interaction, respectively, j(z, m) is the
azimuthally integrated angular flux, and Ss(m0 / m) is the scattering
kernel [2,6e9].

The integral of the scattering kernel gives us the total scattering
cross section which is denoted by Ss0.
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ð1

�1

Ssðm0 /mÞ dm0 ¼ Ss0 (2)

For the given direction cosine before the scattering event (i.e. m0),
the neutron direction cosine after scattering (i.e. m) can be sampled
using the probability distribution function of:

Pdf ðm0 /mÞ ¼ Pdf ðmÞ ¼ Ssðm0/mÞ
Ss0

(3)

where
R 1
�1 Pdf ðm0 /mÞ dm ¼ 1:0.

The ratio of the total scattering cross section to the total cross
section is denoted by c and is known as average number of sec-
ondary neutrons per collision [10,11]. For the total cross section of
equal of 1.0 cm�1 and using the given definitions the Eq.1 is re-
written as follows:

m
vjðz;mÞ

vz
þ jðz;mÞ ¼ c

ð1

�1

Pdf ðm0 /mÞ jðz;m0Þ dm0 (4)

The equation above also known as transport equation in term of
optical thickness, in such a condition z represents the optical
thickness and the total cross section can take any value.

Different types of deterministic solution methods were pre-
sented to solve the neutron transport equations with strongly
anisotropic scattering in spherical, half-space, and both reflected
and bare slab geometries [7e9,12e20]. The effects of the strongly
anisotropic scatterings on the spectrum of the time-eigenvalues for
one-speed neutron transport in the spherical geometry were
investigated by Sahni and Sj€ostrand. The critical size of both re-
flected and bare slab reactors with strongly anisotropic scatterings
was studied by using the PN, modifiedUN, ultraspherical polynomial

PðlÞN and TN approximation methods [7,8,13,14]. The corresponding
transport equation for the monoenergetic slab problem with
strongly anisotropic scatterings was solved using both the FN
method and the variational technique and used to calculate the
albedo and transmission factor [15,17]. Besides, for different types
of anisotropic scatterings, the calculation of the half-space albedo
problem was performed by using both FN and modified FN
approximation methods [18,20]. The Singular Value Decomposition
(SVD)method [21,22] was used to solve the transport equations of a
half-space problems with Anlı-Güng€or strongly anisotropic scat-
tering kernel [23]. The critical thickness problem in the reflected
system with tetra-anisotropic scattering was solved by Koklu and
Ozer [28]. Rashidian Maleki presented a Monte Carlo method to
solve the slab albedo problem with linearly anisotropic scattering,
in which by sampling the scattering cosine and then rotating the
coordinate systems [24] the direction of the scattered neutron was
calculated.

In this study, a pure Monte Carlo simulation method is devel-
oped to solve both slab albedo and half-space albedo problemswith
In€onü and Anlı-Güng€or scattering function. To confirm the validity
of the Monte Carlo simulation, the simulation results are compared
with the results of different deterministic solution methods.
2. Half-space and slab albedo problems

In half-space problem, an angular dependent neutron beam of
the form j(0, m) ¼ mP (P ¼ 0, 1, 2, ..) incidents from the vacuum to a
non-multiplying half-space z � 0 [18,19,23]. The reflection proba-
bility of the system (albedo) is obtained subsequent to the solution
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of the corresponding transport equation. Several scattering func-
tions have been assumed and proposed to investigate the half-
space albedo problem, where we only consider two more compli-
cated scattering functions:

The first one is the In€onü scattering function, which is expressed
as a combination of the linearly anisotropic scattering, forward
scattering, and backward scattering [18,25]:

Ssðm0
/mÞ ¼ Ss0

�a
2
ð1þ 3 f1 m

0
mÞ þ b dðm0 � mÞ þ d dðm0 þ mÞÞ

�

(5)

where f1 is a constant and can take both positive and negative
values. a,b and d are the positive constants where a þ b þ d ¼ 1.

The second one is the Anlı-Güng€or scattering function [23]:

Ssðm0
/mÞ ¼ Ss0

2

�
1þ t P1ðm

0 Þ P1ðmÞ þ t2 P2ðm
0 Þ P2ðmÞ

�
(6)

where t is known as scattering parameter and takes values
between� 1.0 and 1.0. P1(m) ¼ m and P2ðmÞ ¼ 1

2 ð3m2 �1Þ are the first
and second order Legendre polynomials, respectively.

In the case of slab albedo problem, a non-multiplying slab me-
dium of a thickness of 2a cm (extended from��a to a) is subjected
to a monoenergetic neutron beam from the left side. There is a
vacuum boundary condition on the right side as well. The aim of
this problem is to calculate the albedo and transmission factor by
solving the neutron transport equation. In this case, In€onü scat-
tering function is assumed as a combination of the isotropic, for-
ward, and backward scattering terms [16,17]:

Ssðm0
/mÞ ¼ Ss0

�
1� 2k

2
þ ðkþ gÞ dðm0 � mÞ þ ðk� gÞ dðm0 þ mÞ

�

(7)

where k and g are the constant values.
3. Monte Carlo algorithm

3.1. Particle tracking

To start the Monte Carlo simulation, the Nn number of incident
neutrons of the weight of w0 ¼ 1 which enter into the system at
z0 ¼ zin cm is taken into account. For the incident neutrons with an
angular flux of j(0, m)¼ mP , the incoming partial current of incident
neutrons becomes equal to 1/(P þ 2). Hereby, using the (P þ 2) mPþ1

function as the probability distribution function, the cosine of the
polar angle of the incident neutron (denoted by m0) direction is
sampled as follows:

m0 ¼ x
1

Pþ2 (8)

where x represents a uniformly distributed random number be-
tween zero and one.

Since we deal with a one-dimensional problem, the azimuth
angle is taken as free variable (system is rotationally invariant).
Therefore, sampling the direction cosine is sufficient to simulate
the neutron direction.

Due to the simulation time-cost, it is impossible to use a large
number of histories in the Monte Carlo simulations. Killing a
neutron due to leakage imposes a variance on the simulation re-
sults. To obtainmore precise result with a small number of histories
(e.g. 105 or 106 neutrons), the forced collision variance reduction
technique is implemented during the simulation. In this variance
reduction technique, first of all, the minimum distance to surface in
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the neutron direction (ds) is calculated, then e�Stds fraction of the
neutron weight is allowed to leak from the system and the

remaining weight
�
wint ¼ ð1�e�Stds Þ w0

�
is forced to do a collision

after traveling a path length of dð2½0; ds�Þ. This method causes
neutron to live longer and subsequently have more chance to score,
that is, the forced collision technique increases sampling of colli-
sions in specified regions.

d ¼ � 1
St

ln
h
1� xð1� e�StdsÞ

i
(9)

The new position of the interacted neutron is calculated as:

z ¼ z0 þ d� m0 (10)

Killing a neutron due to absorption also imposes an additional
variance on the simulation results. To minimize this imposed
variance, implicit capture variance reduction technique is imple-
mented as well. Therefore, Sa/St fraction of the wint is killed due to
absorption and the remaining weight undergoes a scattering event.
Since, we deal with one-speed neutrons, the neutron energy after
the scattering does not change. Therefore, only the neutron direc-
tion changes and should be sampled. For a neutron with an initial
direction cosine of m0, the scattered neutron direction for different
scattering functions is sampled as follows:

1. The In€onü scattering function: In this case, the probability dis-
tribution function to sample the direction cosine of the scattered
neutron is in the form of:

Pdf ðmÞ ¼
�a
2
ð1þ 3 f1 m

0
mÞ þ b dðm0 � mÞ þ d dðm0 þ mÞ

�
(11)

To sample the m parameter, a random number x is generated. Ac-
cording to the generated random number magnitude and using the
a þ b þ d ¼ 1 condition, there are three different possibilities:

(a) If x � a, the Pdf(m) is taken as follows:

Pdf ðmÞ ¼ 1
2
ð1þ 3 f1 m0 mÞ (12)

By calculating the corresponding cumulative distribution func-
tion and using the inverse transformmethod the m is the solution of
the quadratic equation below:

ð3f1m0Þm2 þ 2mþ ð2�3f1m
0 �4xÞ ¼ 0 (13)

For different values of m0 2 [ � 1, 1] and x 2 [0, 1], one of the
obtained values for m always take a value between � 1 and 1. It also
should be noted that, for the cases with f1 ¼ 0, the m is easily
sampled as 2x � 1.

(b) Else if x > a and x � (a þ b), the Pdf(m) is taken equal to
d(m0 � m). Subsequently m becomes equal to m0, that is, neutron
does not change its direction.

(c) Otherwise, Pdf(m) is taken equal to d(m0 þ m), and m becomes
equal to � m0, that is, the neutron’s new direction is directly
opposite to its old direction.

2. Anlı-Güng€or scattering function: In this case, the probability
distribution function takes the form below:

Pdf ðmÞ ¼ 1
2

�
1þ t P1ðm0Þ P1ðmÞ þ t2 P2ðm0Þ P2ðmÞ

�
(14)

For the given t and m0 values, the m is obtained by solving the
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following cubic equation:

m3 þ 2m
0

t
�
3m

02 � 1
�m2 þ 1� t2

4

�
3m

02 � 1
�

t2

4

�
3m

02 � 1
� mþ

1� 2x� tm
0

2
t2

4

�
3m

02 � 1
� ¼ 0:0

(15)

The solution method of equation above was presented by Press
et al. and Bose [27,29]. For different values of m0, t and x, one of the
obtained values for m always take a physically meaningfull value
between � 1 and 1.

To track the transport of the scattered neutron, z0 , w0 and m0

values are updated to z, ðSs=StÞwint and m respectively.
Figure Of Merit (FOM) is defined as 1/(R2T) where R and T

represent relative error and computation time, respectively. FOM is
used as a criterion in the performance analysis of Monte Carlo
simulations, and the aim is to maximize the FOM value. Monitoring
the particles with negligible weights takes a long simulation time.
This, in turn, decreases the FOM. To overcome this undesired
problem the Russian-Roulette method is taken into account. In the
Russian-Roulette method, threshold and survival weights which
are denoted by wrr and wsur, respectively, are selected in terms of
the average weight of the incident neutrons. If the weight of the
scattered neutron be less than the threshold weight (w0 < wrr) a
uniformly distributed random number is chosen. If this random
number be less than the Psur(¼ w0/wsur) the particle with the new
weight of w0(¼ wsur) is survived; otherwise, the neutron is killed
and transport of the other neutrons is simulated. In this manu-
script, the threshold and survival weights are set to 0:25 wavinc and
0:50 wavinc , where the wavinc denotes the average weight of the
incident neutrons and is equal to unity.

The transport of each neutron is monitored until it is killed by
the Russian-Roulette method.

3.2. Tallying

Reflection probability (Albedo) is denoted by a. The trans-
mission factor for a slab problem is also denoted by t. These
quantities are tallied as follows [26].

a ¼
PNLl

i¼1w0i
e�Stdsi

Nn � 1:0
(16)

t ¼
PNLr

j¼1w0j
e�Stdsj

Nn � 1:0
(17)

where i is the number of leakage events that occur at the left
boundary, j also represents the number of leakage events that occur
at the right boundary of the slab media, w0i

and w0j
represent the

weight of neutrons leaking from the left and right boundaries,
respectively.

3.3. Error estimation

For each incident neutron of the weight of unity, the total out-
going partial current at the left side gives us the albedo per incident
neutron (ai). Since the Nn number of incident neutrons is used in
the Monte Carlo simulation, the estimated albedo can be expressed
as follows.

a ¼
PNn

i¼1ai
Nn � 1:0

¼ a1 þ a2 þ/þ aNn

Nn
¼ a

̄
i (18)



Table 1
Comparison of the albedo values obtained from Monte Carlo (MC) and FN¼7 deterministic method for P¼0.0, d¼0.0 and c¼0.8.

f1 Method b ¼ 0.20 b ¼ 0.40 b ¼ 0.60 b ¼ 0.80

0.10 MC 0.288231 ± 2.92588E � 4 0.244203 ± 2.88785E � 4 0.188536 ± 2.74615E � 4 0.112967 ± 2.32996E � 4
FN¼7 0.288155 0.244357 0.188624 0.113273

0.20 MC 0.269151 ± 2.90613E � 4 0.226812 ± 2.85155E � 4 0.173496 ± 2.68082E � 4 0.101764 ± 2.23188E � 4
FN¼7 0.269071 0.226496 0.173011 0.102171

0.30 MC 0.247879 ± 2.87109E � 4 0.207040 ± 2.78580E � 4 0.156097 ± 2.58821E � 4 0.090371 ± 2.12856E � 4
FN¼7 0.247976 0.206959 0.156188 0.0904984
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It is evident that the estimated albedo is equal to themean of the
calculated albedos per incident neutron. Therefore, the corre-
sponding error for the estimated system albedo becomes equal to

the standard error of a
̄ 0
is, and is denoted by s

a
̄
i
:

s
a
̄
i
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nn�1
PNn

i¼1ðai � a
̄
iÞ2

r
ffiffiffiffiffiffi
Nn

p (19)

In this paper, the confidence interval is taken as a±ð1�s
a
̄
i
Þ, that

is, with a probability of 68% the true albedo value is in this confi-
dence interval. To estimate the corresponding error for the trans-
mission factor a similar procedure is followed.
4. Results and discussions

In this section, the validity of the proposed Monte Carlo simu-
lation is tested on different benchmark problems given in the
literature. In this manuscript in order to make our results compa-
rable with the results given in the literature, the total cross section
is taken equal to 1 cm�1 [16,18,20,23]. In addition, the mean
number of secondary neutrons per collision (c) is used as an input
parameter to specify the required cross sections. It is worth noting
that, the Monte Carlo simulation codes are written in FORTRAN 90,
and in each simulation, the 1E þ 6 number of incident neutrons is
taken into consideration.
4.1. Case1: Half-space problem

The reflection probability of the half-space media, for different
scattering functions, is calculated as followings:
Table 2
The albedo values for P¼0.0, b¼0.0 and. c¼0.8.

f1 Method d ¼ 0.20 d ¼ 0.40

0.10 MC 0.365589 ± 2.87871E � 4 0.399820 ± 2.806
FN¼7 0.360123 0.392586

0.20 MC 0.352436 ± 2.89626E � 4 0.391777 ± 2.831
FN¼7 0.341954 0.376424

0.30 MC 0.339320 ± 2.91670E � 4 0.383869 ± 2.856
FN¼7 0.321804 0.358635

Table 3
The albedo values for varying c and � 1.0 � t � �0.2.

c Method � 1.0

0.70 MC 0.305108 ± 2.27063E � 4
SVD 0.305346

0.80 MC 0.393433 ± 2.56004E � 4
SVD 0.393338

0.90 MC 0.526991 ± 2.77537E � 4
SVD 0.527150
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4.1.1. _In€onü strongly anisotropic scattering function
In this test case, for different input parameters, the resulted

albedo values for a half-space problem are compared with the re-
sults of FN¼7 [19] deterministic method. In Table 1, the value of the
d parameter is taken equal to zero, that is, the contribution of the
backward scattering is decreased. It is seen that, for a fixed value of
f1, by increasing the b value the contribution of the forward scat-
tering increases, and subsequently, the albedo value goes down.
Also, for constant b values, any increase in the f1 value causes the
contribution of the forward scattering to increase, and then the
albedo declines. It is clearly seen that, the results of FN¼7 method
and Monte Carlo simulation method are in good agreement with
each other.

The albedo values for the cases that b value is taken equal to zero
are presented in Table 2. It is seen that for a fixed value of f1, by
increasing the d value, the backward scattering contribution is
increased and then the albedo value goes up. As seen in Table, any
increase in the f1 value causes to decrease in the albedo.
4.1.2. Anlı-Güng€or strongly anisotropic scattering functions
In this test case, the effect of change of scattering parameter and

c value on the half-space reflection probability is investigated using
the developed Monte Carlo method and presented in Tables 3 and
4. The results obtained are compared with the results of the Sin-
gular Value Decomposition (SVD) method [23].

As seen in the tables, for a constant c value, by increasing the
scattering parameter the albedo goes down. This, in turn, is because
of increasing the forward scattering contribution for more positive t
values. It is also seen that the results of both methods are close to
each other.
d ¼ 0.60 d ¼ 0.80

51E � 4 0.431729 ± 2.71089E � 4 0.463167 ± 2.58614E � 4
0.423530 0.456254

73E � 4 0.427338 ± 2.73446E � 4 0.461188 ± 2.59736E � 4
0.410137 0.447274

67E � 4 0.422895 ± 2.75265E � 4 0.459447 ± 2.60657E � 4
0.395585 0.437754

� 0.60 � 0.20

0.286054 ± 2.28276E � 4 0.2667385 ± 2.28754E � 4
0.286501 0.266829
0.373899 ± 2.59265E � 4 0.353391 ± 2.61832E � 4
0.373840 0.352979
0.509055 ± 2.83959E � 4 0.489324 ± 2.9036E � 4
0.509010 0.488967



Table 4
: The albedo values for varying c and 0.20 � t � 1.0.

t

C Method 0.20 0.60 1.0

0.70 MC 0.2461012 ± 2.27844E � 4 0.2235172 ± 2.25564E � 4 0.1992413 ± 2.21695E � 4
SVD 0.245910 0.223414 0.199098

0.80 MC 0.330298 ± 2.63484 0.305277 ± 2.63564E � 4 0.276995 ± 2.62415E � 4
SVD 0.330196 0.304949 0.276682

0.90 MC 0.466033 ± 2.95979E � 4 0.439994 ± 3.01066E � 4 0.409927 ± 3.05038E � 4
SVD 0.466338 0.440319 0.409863

Table 5
The albedo for different degrees of P with 2a ¼ 1.0 cm and c ¼ 0.8.

k g P ¼ 0.0 P ¼ 2.0 P ¼ 5.0 P ¼ 10.0

MC Exact MC Exact MC Exact MC Exact

0.0 0.0 0.280410 0.2801 0.247585 0.2471 0.231613 0.2316 0.222872 0.2228
0.375000 � k 0.397687 0.3940 0.370811 0.3669 0.356787 0.3529 0.348625 0.3444

� k/2 0.348933 0.3454 0.321174 0.3175 0.306840 0.3034 0.298783 0.2951
0.0 0.288221 0.2844 0.260666 0.2567 0.246814 0.2432 0.2394139 0.2354
k/2 0.208068 0.2052 0.182684 0.1798 0.170841 0.1681 0.164432 0.1617
(3k)/4 0.157438 0.1557 0.134499 0.1331 0.124768 0.1233 0.119567 0.1180
k 0.096975 0.0970 0.079540 0.0793 0.072190 0.0722 0.068784 0.0685

0.446428 k 0.417683 0.4184 0.393444 0.3943 0.379947 0.3809 0.371657 0.3726
� k/2 0.362818 0.3637 0.337675 0.3383 0.323876 0.3247 0.315509 0.3164
0.0 0.291438 0.2921 0.265618 0.2666 0.252461 0.2535 0.244496 0.2458
k/2 0.193095 0.1934 0.170235 0.1709 0.159475 0.1602 0.153444 0.1542
(3k)/4 0.127760 0.1278 0.109750 0.1097 0.101360 0.1017 0.097090 0.0974
k 0.045327 0.0450 0.035887 0.0358 0.032516 0.0323 0.030625 0.0306
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4.2. Case2: Slab albedo problem

In this test case, using the scatteringmodel presented in Eq.7, for
incident neutrons with different inlet currents, the reflection and
transmission probabilities are estimated by employing the pro-
posed Monte Carlo method. Moreover, the effects of different types
of scattering are also investigated. The albedo and transmission
factor for different types of inlet currents (different P values) with
2a¼ 1.0 cm and c¼ 0.8 are presented in Tables 5 and 6, respectively.
The Monte Carlo results are compared with the results of an Exact
named deterministic method [16,17]. As seen in the Tables, for the
fixed values of k and g, by increasing the order of P a decrease of
albedo and an increase of the transmission factor is observed. Also,
it is clearly seen that for cases with a constant k value, by increasing
the g value the forward scattering contribution to overall scattering
goes up, then albedo and transmission factor experience a decrease
and an increase, respectively.

It is also seen that the results of both methods are comparable
Table 6
The Transmission factor for different degrees of P with 2a ¼ 1.0 cm and c ¼ 0.8.

k g P ¼ 0.0 P ¼ 2.0

MC Exact MC

0.0 0.0 0.416090 0.4163 0.471847
0.375000 � k 0.320227 0.3214 0.381554

� k/2 0.364947 0.3657 0.429880
0.0 0.421186 0.4221 0.489053
k/2 0.496034 0.4967 0.566155
(3k)/4 0.543589 0.5441 0.613523
k 0.600962 0.6010 0.668354

0.446428 � k 0.309045 0.3090 0.372139
� k/2 0.358496 0.3584 0.426424
0.0 0.424179 0.4241 0.496495
k/2 0.516289 0.5159 0.589615
(3k)/4 0.577698 0.5774 0.649495
k 0.655270 0.6555 0.722588
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with each other. It is important to note that the incident neutron is
absorbed by the medium’s nuclei with a probability of 1 � a � t.

5. Conclusion

It is a well-known fact that, except for the simple cases that a
purely absorbing media containing one-speed neutrons, the
neutron transport equation can not be solved analytically. To get
informed about the reaction rate and other required parameters the
angular flux which is the solution of the transport equation is
required. Therefore, the transport equation is solved and simulated
using the Monte Carlo and deterministic methods. Half-space and
slab albedo problems have been investigated using different
deterministic solution methods. In this study, the author presents a
Monte Carlo algorithm to simulate these problems with two
different strongly anisotropic scattering functions. The incident
neutron’s direction is sampled using the concept of inlet current.
Moreover, the scattered neutron’s direction is also sampled using
P ¼ 5.0 P ¼ 10.0

Exact MC Exact MC Exact

0.4721 0.500662 0.5008 0.517363 0.5176
0.3824 0.413011 0.4138 0.431205 0.4321
0.4305 0.462698 0.4628 0.480839 0.4813
0.4903 0.522316 0.5230 0.540377 0.5413
0.5667 0.597720 0.5986 0.615632 0.6160
0.6137 0.644009 0.6443 0.660525 0.6607
0.6684 0.696989 0.6968 0.711747 0.7117
0.3722 0.404183 0.4041 0.422968 0.4226
0.4262 0.459447 0.4593 0.478881 0.4781
0.4859 0.530024 0.5295 0.548821 0.5481
0.5896 0.622363 0.6219 0.639309 0.6391
0.6497 0.679970 0.6799 0.695684 0.6956
0.7225 0.748849 0.7487 0.762213 0.7620
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the corresponding scattering function. It is observed that the re-
sults of Monte Carlo and deterministic methods are in good
agreement.

It is well-known fact that the Monte Carlo methods are widely
used in the simulation of the systems with complex geometry and
with complex energy and angular dependence of neutron behavior.
However, deterministic methods may fall short in addressing such
complex systems. Therefore, as future works, the presented
method in this study can be extended to simulate the more com-
plex nuclear systems with strongly anisotropic scattering
behaviors.
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