• Title/Summary/Keyword: neutron detector

Search Result 202, Processing Time 0.027 seconds

Development of Fast Neutron Detector and its Characteristics (속중성자 탐지용 반도체 소자의 개발과 특성분석)

  • Lee, Nam-Ho;Cho, Jae-Wan;Jung, Hyun-Kyu;Kim, Sung-Ho;Kim, Yang-Mo;Han, Min-Gu
    • Proceedings of the KIEE Conference
    • /
    • 2002.07c
    • /
    • pp.1562-1565
    • /
    • 2002
  • 속중성자 피폭 시 실리콘 다이오드 내부에서 발생되는 변위 손상을 이용한 속중성자 탐지용 PIN 다이오드를 개발하고 중성자장에서 특성변화 및 감도 실험을 통하여 성능을 검증하였다. 시뮬레이션과 다양한 구조로 제작된 소자에 대한 방사선 실험을 거쳐 집합체 형태와 개별 PIN 다이오드를 제작한 다음 중성자 반응 특성과 감도 분석을 위한 중성자 방사선 실험을 수행하였다. 여러 개의 PIN 다이오드 샘플에 대한 중성자 특성변화를 실시간으로 측정하기 위해 디지털 정전류 구동 방식의 온라인 전자적 선량계 모듈을 제작하여 사용한 실험의 결과. 본 연구에서 개발한 PIN 다이오드 소자는 중성자 방사선에 대하여 우수한 감도 특성을 갖는다는 것과 입사 중성자에 대한 방향 의존성이 거의 없다는 사실을 알 수 있었다. 그리고 이어 수행된 300여 시간의 열화실험을 통하여 본 연구에서 제작된 PIN 다이오드 소자는 중성자 탐지소자로서의 사용 가능성이 충분함을 확인할 수 있었다.

  • PDF

Error Rate for the Limiting Poisson-power Function Distribution

  • Joo-Hwan Kim
    • Communications for Statistical Applications and Methods
    • /
    • v.3 no.1
    • /
    • pp.243-255
    • /
    • 1996
  • The number of neutron signals from a neutral particle beam(NPB) at the detector, without any errors, obeys Poisson distribution, Under two assumptions that NPB scattering distribution and aiming errors have a circular Gaussian distribution respectively, an exact probability distribution of signals becomes a Poisson-power function distribution. In this paper, we show that the error rate in simple hypothesis testing for the limiting Poisson-power function distribution is not zero. That is, the limit of ${\alpha}+{\beta}$ is zero when Poisson parameter$\kappa\rightarro\infty$, but this limit is not zero (i.e., $\rho\ell$>0)for the Poisson-power function distribution. We also give optimal decision algorithms for a specified error rate.

  • PDF

Some Improvements of Gamma-ray Measurement for the Determination of the Boron Content (붕소 함량결정을 위한 즉발 감마선 계측법의 개선)

  • Nak Bae Kim;Hae-Ill Bak
    • Nuclear Engineering and Technology
    • /
    • v.16 no.1
    • /
    • pp.18-20
    • /
    • 1984
  • The detection limit of boron has been lowered further in the capture gamma-ray measurement after preconcentration of boron by placing natural lithium brick in front of Ge(Li) detector. The experimental detection limit is found to be 0.30ppm, 0.18ppm, 0.045ppm and 0.090ppm for the samples of aluminum, steel, uranium dioxide and graphite, respectively. An alternate counting technique kas been also used for neglecting the error caused by the fluctuation of neutron flux during counting.

  • PDF

MASTER - An Indigenous Nuclear Design Code of KAERI

  • Cho, Byung-Oh;Lee, Chang-Ho;Park, Chan-Oh;Lee, Chong-Chul
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05a
    • /
    • pp.21-27
    • /
    • 1996
  • KAERI has recently developed the nuclear design code MASTER for the application to reactor physics analyses for pressurized water reactors. Its neutronics model solves the space-time dependent neutron diffusion equations with the advanced nodal methods. The major calculation categories of MASTER consist of microscopic depletion, steady-state and transient solution, xenon dynamics, adjoint solution and pin power and burnup reconstruction. The MASTER validation analyses, which are in progress aiming to submit the Uncertainty Topical Report to KINS in the first half of 1996, include global reactivity calculations and detailed pin-by-pin power distributions as well as in-core detector reaction rate calculations. The objective of this paper is to give an overall description of the CASMO/MASTER code system whose verification results are in details presented in the separate papers.

  • PDF

Distinct properties of tungsten austenitic stainless alloy as a potential nuclear engineering material

  • Salama, E.;Eissa, M.M.;Tageldin, A.S.
    • Nuclear Engineering and Technology
    • /
    • v.51 no.3
    • /
    • pp.784-791
    • /
    • 2019
  • In the present study, a series of tungsten austenitic stainless steel alloys have been developed by interchanging the molybdenum in standard SS316 by tungsten. This was done to minimize the long-life residual activation occurred in molybdenum and nickel after decommissioning of the power plant. The microstructure and mechanical properties of the prepared alloys are determined. For the sake of increasing multifunction property of such series of tungsten-based austenitic stainless steel alloys, gamma shielding properties were studied experimentally by means of NaI(Tl) detector and theoretically calculated by using the XCOM program. Moreover, fast neutrons macroscopic removal cross-section been calculated. The obtained combined mechanical, structural and shielding properties indicated that the modified austenitic stainless steel sample containing 1.79% tungsten and 0.64% molybdenum has preferable properties among all other investigated samples in comparison with the standard SS316. These properties nominate this new composition in several nuclear application domains such as, nuclear shielding domain.

Spectroscopic Properties of Gamma-ray Detector to Measure the Burnup of Spent Nuclear Fuel (사용후핵연료 연소도 측정을 위한 감마선 검출기의 분광특성 연구)

  • Hey Min Park;Tae Young Kim;Yang Soo Song;Un Jang Lee;Cheol Min Ham
    • Journal of Radiation Industry
    • /
    • v.17 no.1
    • /
    • pp.119-125
    • /
    • 2023
  • Burnup of spent nuclear fuel should be determined accurately for the safety storage of spent nuclear fuel. In this study, a gamma detection system was developed as a part of basic research to measure the burnup of spent nuclear fuel, and its performance was evaluated using a calibration source. The prototype of the gamma detection system was based on a semiconductor sensor using a CZT (Cadmium Zinc Telluride). For quantitative evaluation, tests were conducted using 137Cs, 134Cs and 252Cf calibration source. In the performance evaluation, Its field applicability was verified by assessing the energy resolution, the detection linearity and the shielding attenuation according to the nuclide.

GRAVITATIONAL WAVES AND ASTRONOMY (중력파와 천문학)

  • Lee, Hyung-Mok;Lee, Chang-Hwan;Kang, Gung-Won;Oh, John-J.;Kim, Chung-Lee;Oh, Sang-Hoon
    • Publications of The Korean Astronomical Society
    • /
    • v.26 no.2
    • /
    • pp.71-87
    • /
    • 2011
  • Gravitational waves are predicted by the Einstein's theory of General Relativity. The direct detection of gravitational waves is one of the most challenging tasks in modern science and engineering due to the 'weak' nature of gravity. Recent development of the laser interferometer technology, however, makes it possible to build a detector on Earth that is sensitive up to 100-1000 Mpc for strong sources. It implies an expected detection rate of neutron star mergers, which are one of the most important targets for ground-based detectors, ranges between a few to a few hundred per year. Therefore, we expect that the gravitational-wave observation will be routine within several years. Strongest gravitational-wave sources include tight binaries composed of compact objects, supernova explosions, gamma-ray bursts, mergers of supermassive black holes, etc. Together with the electromagnetic waves, the gravitational wave observation will allow us to explore the most exotic nature of astrophysical objects as well as the very early evolution of the universe. This review provides a comprehensive overview of the theory of gravitational waves, principles of detections, gravitational-wave detectors, astrophysical sources of gravitational waves, and future prospects.

Measurements of Neutron Activation and Dose Rate Induced by High-Energy Medical Linear Accelerator

  • Kwon, Na Hye;Jang, Young Jae;Kim, Jinsung;Kim, Kum Bae;Yoo, Jaeryong;Ahn, So Hyun;Kim, Dong Wook;Choi, Sang Hyoun
    • Progress in Medical Physics
    • /
    • v.32 no.4
    • /
    • pp.145-152
    • /
    • 2021
  • Purpose: During the treatments of cancer patients with a linear accelerator (LINAC) using photon beams with energies ≥8 MV, the components inside the LINAC head get activated through the interaction of photonuclear reaction (γ, n) and neutron capture (n, γ). We used spectroscopy and measured the dose rate for the LINAC in operation after the treatment ended. Methods: We performed spectroscopy and dose rate measurements for three units of LINACs with a portable high-purity Germanium (HPGe) detector and a survey meter. The spectra were obtained after the beams were turned off. Spectroscopy was conducted for 3,600 seconds, and the dose rate was measured three times. We identified the radionuclides for each LINAC. Results: According to gamma spectroscopy results, most of the nuclides were short-lived radionuclides with half-lives of 100 days, except for 60Co, 65Zn, and 181W nuclides. The dose rate for three LINACs obtained immediately in front of the crosshair was in the range of 0.113 to 0.129 µSv/h. The maximum and minimum dose rates measured on weekends were 0.097 µSv/h and 0.092 µSv/h, respectively. Compared with the differences in weekday data, there was no significant difference between the data measured on Saturday and Sunday. Conclusions: Most of the detected radionuclides had half-lives <100 days, and the dose rate decreased rapidly. For equipment that primarily used energies ≤10 MV, when the equipment was transferred after at least 10 minutes after shutting it down, it is expected that there will be little effect on the workers' exposure.

Improvement of accuracy in radioactivity assessment of medical linear accelerator through self-absorption correction in HPGe detector

  • Suah Yu;Na Hye Kwon;Sang-Rok Kim;Young Jin Won;Kum Bae Kim;Se Byeong Lee;Cheol Ha Baek;Sang Hyoun Choi
    • Nuclear Engineering and Technology
    • /
    • v.56 no.6
    • /
    • pp.2317-2323
    • /
    • 2024
  • Medical linear accelerators with an energy of 8 MV or higher are radiated owing to photonuclear reactions and neutron capture reactions. It is necessary to quantitatively evaluate the concentration of radioactive isotopes when replacing or disposing them. HPGe detectors are commonly used to identify isotopes and measure radioactivity. However, because the detection efficiency is generally calibrated using a standard material with a density of 1.0 g/cm3, a self-absorption effect occurs if the density of the measured material is high. In this study, self-absorption correction factors were calculated for tungsten, lead, copper, and SUS-303, which are the main materials of medical linear accelerator head parts, for each gamma-ray energy using MCNP 6.2 code. The self-absorption effect was more pronounced as the energy of the emitted gamma rays decreased and the density of the measured materials increased. These correction factors were applied to the radioactivity measurements of the in-built and portable HPGe detectors. Furthermore, compared to the surface dose rate measured by the survey meter, the accuracy of the measurements of radioactivity improved by an average of 124.31 and 100.53 % for inbuilt and portable HPGe detectors, respectively. The results showed a good agreement, with an average difference of 3.70 and 5.24 %.

Radiation Field in PWR Plants (PWR 발전소에서의 방사선장 특성)

  • Song, Myung-Jae;Kim, Hee-Keun;Kim, Bong-Hwan;Chang, Si-Young
    • Journal of Radiation Protection and Research
    • /
    • v.17 no.2
    • /
    • pp.61-70
    • /
    • 1992
  • Photon, neutron and beta radiation fields were measured at PWR plants which are the representative types of nuclear power plant operated in Korea. The photon energy spectra were measured at locations in the auxiliary building during operation period and in the containment vessel(C/V) during shutdown period using a portable gamma spectrometer with a HPGe detector. The distribution of average energy was found to range from 440 to 780 keV in the C/V and from 280 keV to 760 keV in the auxiliary building, respectively. The average neutron energy measured at the five locations around the operation deck in the C/V in operation using a BMSS (Bonner Multi-Sphere Spectrometer) ranged from 20 keV to 210 keV. A computer code, BUNKI was used to unfold the spectrum. The beta energy spectra in the C/V and in the auxiliary building in annual outage were determined using 14 smear samples taken from the highly contaminated areas. The analysis showed that the representative corrosion product, $^{60}Co$ made main contribution to the beta energy field.

  • PDF