• Title/Summary/Keyword: neutron detector

Search Result 200, Processing Time 0.026 seconds

Analysis of fluctuations in ex-core neutron detector signal in Krško NPP during an earthquake

  • Tanja Goricanec;Andrej Kavcic;Marjan Kromar;Luka Snoj
    • Nuclear Engineering and Technology
    • /
    • v.56 no.2
    • /
    • pp.575-600
    • /
    • 2024
  • During an earthquake on December 29th 2020, the Krško NPP automatically shutdown due to the trigger of the negative neutron flux rate signal on the power range nuclear instrumentation. From the time course of the detector signal, it can be concluded that the fluctuation in the detector signal may have been caused by the mechanical movement of the ex-core neutron detectors or the pressure vessel components rather than the actual change in reactor power. The objective of the analysis was to evaluate the sensitivity of the neutron flux at the ex-core detector position, if the detector is moved in the radial or axial direction. In addition, the effect of the core barrel movement and core inside the baffle movement in the radial direction were analysed. The analysis is complemented by the calculation of the thermal and total neutron flux gradient in radial, axial and azimuthal directions. The Monte Carlo particle transport code MCNP was used to study the changes in the response of the ex-core detector for the above-mentioned scenarios. Power and intermediate-range detectors were analysed separately, because they are designed differently, positioned at different locations, and have different response characteristics. It was found that the movement of the power range ex-core detector has a negligible effect on the value of the thermal neutron flux in the active part of the detector. However, the radial movement of the intermediate-range detector by 5 cm results in 7%-8% change in the thermal neutron flux in the active part of the intermediate-range detector. The analysis continued with an evaluation of the effects of moving the entire core barrel on the ex-core detector response. It was estimated that the 2 mm core barrel radial oscillation results in ~4% deviation in the power and intermediate-range detector signal. The movement of the reactor core inside baffle can contribute ~6% deviation in the ex-core neutron detector signal. The analysis showed that the mechanical movement of ex-core neutron detectors cannot explain the fluctuations in the ex-core detector signal. However, combined core barrel and reactor core inside baffle oscillations could be a probable reason for the observed fluctuations in the ex-core detector signal during an earthquake.

MEASUREMENT OF THE D-D NEUTRON GENERATION RATE BY PROTON COUNTING

  • Kim, In-Jung;Jung, Nam-Suk;Choi, Hee-Dong
    • Nuclear Engineering and Technology
    • /
    • v.40 no.4
    • /
    • pp.299-304
    • /
    • 2008
  • A detection system was set up to measure the neutron generation rate of a recently developed D-D neutron generator. The system is composed of a Si detector, He-3 detector, and electronics for pulse height analysis. The neutron generation rate was measured by counting protons using the Si detector, and the data was crosschecked by counting neutrons with the He-3 detector. The efficiencies of the Si and He-3 detectors were calibrated independently by using a standard alpha particle source $^{241}Am$ and a bare isotopic neutron source $^{252}Cf$, respectively. The effect of the cross-sectional difference between the D(d,p)T and $D(d,n)^3He$ reactions was evaluated for the case of a thick target. The neutron generation rate was theoretically corrected for the anisotropic emission of protons and neutrons in the D-D reactions. The attenuations of neutron on the path to the He-3 detector by the target assembly and vacuum flange of the neutron generator were considered by the Monte Carlo method using the MCNP 4C2 code. As a result, the neutron generation rate based on the Si detector measurement was determined with a relative uncertainty of ${\pm}5%$, and the two rates measured by both detectors corroborated within 20%.

A prototype of the SiPM readout scintillator neutron detector for the engineering material diffractometer of CSNS

  • Yu, Qian;Tang, Bin;Huang, Chang;Wei, Yadong;Chen, Shaojia;Qiu, Lin;Wang, Xiuku;Xu, Hong;Sun, Zhijia;Wei, Guangyou;Tang, Mengjiao
    • Nuclear Engineering and Technology
    • /
    • v.54 no.3
    • /
    • pp.1030-1036
    • /
    • 2022
  • A high detection efficiency thermal neutron detector based on the 6LiF/ZnS(Ag) scintillation screens, wavelength-shifting fibers (WLSF) and Silicon photomultiplier (SiPM) readout is under development at China Spallation Neutron Source (CSNS) for the Engineering Material Diffractometer (EMD).A prototype with a sensitive volume of 180mm×192mm has been built. Signals from SiPMs are processed by the self-design Application Specific Integrated Circuit (ASIC). The performances of this detector prototype are as follows: neutron detection efficiency could reach 50.5% at 1 Å, position resolution of 3, the dark count rate <0.1Hz, the maximum count rate >200KHz. Such detector prototype could be an elementary unit for applications in the EMD detector arrays.

Neutron/gamma scintillation detector for status monitoring of accelerator-driven neutron source IREN

  • S. Nuruyev;D. Berikov;R. Akbarov;G. Ahmadov;F. Ahmadov;A. Sadigov;M. Holik;J. Naghiyev;A. Madadzada;K. Udovichenko
    • Nuclear Engineering and Technology
    • /
    • v.56 no.5
    • /
    • pp.1667-1671
    • /
    • 2024
  • This paper presents a neutron/gamma detector based on a micropixel avalanche photodiode and a plastic scintillator that monitors the status of the accelerator-driven intense resonance neutron source (IREN) facility by measuring the neutron/gamma intensity in the target hall. The electronics of the neutron/gamma detector has been designed and developed. The size of the plastic scintillator was selected to be 3.7 × 3.7 × 30 mm3 due to the sensitive area of the MAPD. The experimental results demonstrated a dependence between the count rate of the detector and the frequency of the accelerator. The detector is sensitive to intermediate and fast neutrons. The minimum detectable energy was determined to be 200 keV using Cs-137 point gamma source. The maximum counting rate of the detector from TTL out is about 2.2⋅106 counts/sec, but for analogue output it is about 2⋅107 counts/sec. The detector can not allow discriminating neutrons and gamma rays by charge integration method.

A scintillation detector configuration for pulse shape analysis

  • Van Chuan, Phan;Hoa, Nguyen Duc;Hai, Nguyen Xuan;Anh, Nguyen Ngoc;Dien, Nguyen Nhi;Khang, Pham Dinh
    • Nuclear Engineering and Technology
    • /
    • v.50 no.8
    • /
    • pp.1426-1432
    • /
    • 2018
  • This paper presents a neutron detector configuration using EJ-301 scintillation liquid, a R9420 photo-multiplier and a homemade preamplifier. The detector qualities which include the energy linearity, efficiency response and neutron/gamma discrimination are guaranteed for neutron detection in the energy range from 0 to 3000 keVee. Regarding the neutron/gamma discrimination capability, four pulse shape discrimination (PSD) methods which are the threshold crossing time (TCT), pulse gradient analysis (PGA), charge comparison (CC) and correlation pattern recognition (CPR), were evaluated and discussed; among of these, the CPR method provides the best neutron/gamma discrimination.

A novel ceramic GEM used for neutron detection

  • Zhou, Jianrong;Zhou, Xiaojuan;Zhou, Jianjin;Jiang, Xingfen;Yang, Jianqing;Zhu, Lin;Yang, Wenqin;Yang, Tao;Xu, Hong;Xia, Yuanguang;Yang, Gui-an;Xie, Yuguang;Huang, Chaoqiang;Hu, Bitao;Sun, Zhijia;Chen, Yuanbo
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1277-1281
    • /
    • 2020
  • A novel ceramic Gas Electron Multiplier (GEM) has been developed to meet the demand of high counting rate for the neutron detection which is an alternative to 3He-based detector at China Spallation Neutron Source (CSNS). An experiment was performed to measure the neutron transmittance of ceramic-GEM and FR4-GEM at the small angle neutron scattering (SANS) instrument. The result showed the ceramic-GEM has higher transmittance and less self-scattering especially for cold neutrons. One single ceramic GEM could give a gain of 102-104 in the mixture gas of Ar and CO2 (90%:10%) and its energy resolution was about 27.7% by using 55Fe X ray of 5.9 keV. A prototype has been developed in order to investigate the performances of the ceramic GEM-based neutron detector. Several neutron beam tests, including detection efficiency, spatial resolution, two-dimensional imaging, and wavelength spectrum, were carried out at CSNS and China Mianyang Research Reactor (CMRR). The results show that the ceramic GEM-based neutron detector is a good candidate to measure the high intensity neutrons.

Sensitivity of a control rod worth estimate to neutron detector position by time-dependent Monte Carlo simulations of the rod drop experiment

  • Jong Min Park;Cheol Ho Pyeon;Hyung Jin Shim
    • Nuclear Engineering and Technology
    • /
    • v.56 no.3
    • /
    • pp.916-921
    • /
    • 2024
  • The control rod worth sensitivity to the neutron detector position in the rod drop experiment is studied by the time-dependent Monte Carlo (TDMC) neutron transport calculations for AGN-201K educational reactor and the Kyoto University Critical Assembly. The TDMC simulations of the rod drop experiments are conducted by the Seoul National University Monte Carlo (MC) code, McCARD, yielding time-dependent neutron densities at detector positions. The detector-position-dependent results of the total control rod worth calculated by the extrapolation, the integral counting, and the inverse methods are compared with the numerical reference using the MC eigenvalue calculations and the experimental results. From these comparisons, it is observed that the total control rod worth can be estimated with a considerable difference depending on the detector position through the rod drop experiment. The proposed TDMC simulation of the rod drop experiment can be applied for searching a better detector position or quantifying a bias for the control rod worth measurement.

Design of a High Efficiency Neutron Detector Using a GEM (GEM을 이용한 고효율 중성자 검출기 설계)

  • Kim, Yong-Kyun;Park, Se-Hwan;Kang, Sang-Mook;Chung, Chong-Eun
    • Journal of Radiation Protection and Research
    • /
    • v.30 no.1
    • /
    • pp.35-37
    • /
    • 2005
  • The radiation detector research group at KAERI has developed a high efficiency neutron detector using a Gas Electron Multiplier (GEM). The double GEM was fabricated and operated in an Ar/Isobutane mixture. For an application to a high efficiency neutron detector, $^6Li\;or\;^{10}B$ neutron converters coated on each surface of the multi GEM foils were considered. The optimized thickness of the thin film for a neutron detection was calculated with the MCNP and SRIM. The neutron efficiency was calculated by changing the chemical components of the thin film, and the thickness of the thin film. The thermalized neutrons were measured by a GEM detector with a thin neutron converter on the drift plate.

Simulation of a neutron imaging detector prototype based on SiPM array readout

  • Mengjiao Tang;Lianjun Zhang;Bin Tang;Gaokui He;Chang Huang;Jiangbin Zhao;Yang Liu
    • Nuclear Engineering and Technology
    • /
    • v.55 no.9
    • /
    • pp.3133-3139
    • /
    • 2023
  • Neutron imaging technology as a means of non-destructive detection of materials is complementary to X-ray imaging. Silicon photomultiplier (SiPM), a new type of optical readout device, has overcome some shortcomings of traditional photomultiplier tube (PMT), such as high-power consumption, large volume, high price, uneven gain response, and inability to work in strong magnetic fields. Its application in the field of neutron detection will be an irresistible general trend. In this paper, a thermal neutron imaging detector based on 6LiF/ZnS scintillation screen and SiPM array readout was developed. The design of the detector geometry was optimized by geant4 Monte Carlo simulation software. The optimized detector was evaluated with a step wedge sample. The results show that the detector prototype with a 48 mm × 48 mm sensitive area can achieve about 38% detection efficiency and 0.26 mm position resolution when using a 300 ㎛ thick 6LiF/ZnS scintillation screen and a 2 mm thick Bk7 optical guide coupled with SiPM array, and has good neutron imaging capability. It provides effective data support for developing high-performance imaging detectors applied to the China Spallation Neutron Source (CSNS).

Characteristics of Radiation-Resistant Real-Time Neutron Monitor for Accelerator-Based BNCT

  • Nakamura, Takemi;Sakasai, Kaoru;Nakashima, Hiroshi;Takamiya, Koichi;Kumada, Hiroaki
    • Journal of Radiation Protection and Research
    • /
    • v.41 no.2
    • /
    • pp.105-109
    • /
    • 2016
  • Background: For an accelerator-based BNCT, we have fabricated a new detector consisting of quartz optical fibers that have excellent radiation-resistant characteristics. Materials and Methods: The developed detectors were irradiated at Kyoto University Research Reactor. Results and Discussion: The experimental results showed that the new detector had good output linearity for the neutron intensity, and the response of the new detector did not decrease during the irradiation. Conclusion: The new detector consisting of quartz optical fibers can be applied to measurement of neutron field of an accelerator-based BNCT.