DOI QR코드

DOI QR Code

A prototype of the SiPM readout scintillator neutron detector for the engineering material diffractometer of CSNS

  • Yu, Qian (University of Chinese Academy of Sciences (UCAS)) ;
  • Tang, Bin (Institute of High Energy Physics, Chinese Academy of Sciences(CAS)) ;
  • Huang, Chang (Spallation Neutron Source Science Center (SNSSC)) ;
  • Wei, Yadong (Institute of Science Techology Innovation, Dongguan University of Technology) ;
  • Chen, Shaojia (Institute of High Energy Physics, Chinese Academy of Sciences(CAS)) ;
  • Qiu, Lin (Spallation Neutron Source Science Center (SNSSC)) ;
  • Wang, Xiuku (Institute of High Energy Physics, Chinese Academy of Sciences(CAS)) ;
  • Xu, Hong (Institute of High Energy Physics, Chinese Academy of Sciences(CAS)) ;
  • Sun, Zhijia (Institute of High Energy Physics, Chinese Academy of Sciences(CAS)) ;
  • Wei, Guangyou (Spallation Neutron Source Science Center (SNSSC)) ;
  • Tang, Mengjiao (Spallation Neutron Source Science Center (SNSSC))
  • Received : 2021.04.08
  • Accepted : 2021.09.14
  • Published : 2022.03.25

Abstract

A high detection efficiency thermal neutron detector based on the 6LiF/ZnS(Ag) scintillation screens, wavelength-shifting fibers (WLSF) and Silicon photomultiplier (SiPM) readout is under development at China Spallation Neutron Source (CSNS) for the Engineering Material Diffractometer (EMD).A prototype with a sensitive volume of 180mm×192mm has been built. Signals from SiPMs are processed by the self-design Application Specific Integrated Circuit (ASIC). The performances of this detector prototype are as follows: neutron detection efficiency could reach 50.5% at 1 Å, position resolution of 3, the dark count rate <0.1Hz, the maximum count rate >200KHz. Such detector prototype could be an elementary unit for applications in the EMD detector arrays.

Keywords

Acknowledgement

This worked was supported by the National Natural Science Foundation of China (No.11875273, U1832111), the Science Foundation of Guangdong (No. 2020B1515120025), the Neutron Physics Laboratory Funding of China Academy of Engineering Physics (Grant No. 2018BCE03), and the State Key Laboratory of particle Detection and Electronics Foundation.

References

  1. J. Wei, H. Chen, Y. Chen, Y. Chen, Y. Chi, C. Deng, H. Dong, L. Dong, S. Fang, J. Feng, S. Fu, L. He, W. He, Y. Heng, K. Huang, X. Jia, W. Kang, X. Kong, J. Li, T. Liang, G. Lin, Z. Liu, H. Ouyang, Q. Qin, H. Qu, C. Shi, H. Sun, J. Tang, J. Tao, C. Wang, F. Wang, D. Wang, Q. Wang, S. Wang, T. Wei, J. Xi, T. Xu, Z. Xu, W. Yin, X. Yin, J. Zhang, Z. Zhang, Z. Zhang, M. Zhou, T. Zhu, China spallation neutron source: design, R&D, and outlook, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 600 (2009) 10-13, https://doi.org/10.1016/j.nima.2008.11.017.
  2. J.A. Dann, M.R. Daymond, L. Edwards, J.A. James, J.R. Santisteban, A comparison between Engin and Engin-X, a new diffractometer optimized for stress measurement, in: Physica B: Condensed Matter, Elsevier, 2004, https://doi.org/10.1016/j.physb.2004.03.139.
  3. B. Tang, Q. Yu, C. Huang, H. yun Teng, Y. feng Wang, H. Xu, Y. tao Liu, L. Qiu, G. you Wei, Z. jia Sun, The research of laser-based rapid measurement system for scintillator neutron detectors arrays, Radiation Detection Technology and Methods 4 (2020) 400-406, https://doi.org/10.1007/s41605-020-00206-9.
  4. K. Sakasai, T. Nakamura, M. Katagiri, K. Soyama, A. Birumachi, S. Satoh, N. Rhodes, E. Schooneveld, Development of neutron detector for engineering materials diffractometer at J-PARC, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 600 (2009) 157-160, https://doi.org/10.1016/j.nima.2008.11.023.
  5. J.B. Mosset, A. Stoykov, U. Greuter, A. Gromov, M. Hildebrandt, T. Panzner, N. Schlumpf, A 16-ch module for thermal neutron detection using ZnS:6LiF scintillator with embedded WLS fibers coupled to SiPMs and its dedicated readout electronics, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 845 (2017) 494-498, https://doi.org/10.1016/j.nima.2016.05.002.
  6. bin tang, Z. Sun, H.U.A.N.G. chang, yun Liu, H. Xu, S. Chen, X. Wang, Q. Yu, H. Teng, Y. Wang, G. Yang, Y. Chen, The neutron scintillator detector arrays (NSDA) for the GPPD in the CSNS, in: SPIE-Intl Soc Optical Eng, 2019, p. 101, https://doi.org/10.1117/12.2524697.
  7. B. Tang, Z.J. Sun, Q. Zhang, Z. Yang, H. Xu, G.A. Yang, Y.F. Wang, C. Wu, Y.B. Chen, L. Yang, Study of a position-sensitive scintillator neutron detector, Chin. Phys. C 36 (2012) 1089-1094, https://doi.org/10.1088/1674-1137/36/11/009.
  8. Instruments of CSNS in the First Target for the Neutron Scattering Experiments, IHEP, http://english.ihep.cas.cn/csns/chnl/99/index.html. (Accessed 30 August 2021). accessed.
  9. T. Nakamura, K. Toh, T. Kawasaki, K. Honda, H. Suzuki, M. Ebine, A. Birumachi, K. Sakasai, K. Soyama, M. Katagiri, A scintillator-based detector with sub-100-㎛ spatial resolution comprising a fibre-optic taper with wavelength-shifting fibre readout for time-of-flight neutron imaging, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 737 (2014) 176-183, https://doi.org/10.1016/j.nima.2013.11.034.
  10. N. Kubota, M. Katagiri, K. Kamijo, H. Nanto, Evaluation of ZnS-family phosphors for neutron detectors using photon counting method, in: Nuclear Instruments and Methods in Physics Research, Section A: Accelerators,, Spectrometers, Detectors and Associated Equipment, 2004, pp. 321-324, https://doi.org/10.1016/j.nima.2004.05.004.
  11. J.B. Mosset, A. Stoykov, U. Greuter, M. Hildebrandt, N. Schlumpf, Digital signal processing for a thermal neutron detector using ZnS(Ag):6LiF scintillating layers read out with WLS fibers and SiPMs, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 824 (2016) 319-321, https://doi.org/10.1016/j.nima.2015.11.062.
  12. A. Stoykov, J.B. Mosset, U. Greuter, M. Hildebrandt, N. Schlumpf, A SiPM-based ZnS:6LiF scintillation neutron detector, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 787 (2015) 361-366, https://doi.org/10.1016/j.nima.2015.01.076.
  13. Hamamatsu Photonics. http://www.hamamatsu.com.cn/UserFiles/upload/file/20190728/2.pdf. (Accessed 30 August 2021) accessed.
  14. Sensl Photonics. https://www.onsemi.com/pdf/datasheet/microc-series-d.pdf. (Accessed 30 August 2021) accessed.
  15. R. Klanner, Characterisation of SiPMs, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 926 (2019) 36-56, https://doi.org/10.1016/j.nima.2018.11.083.
  16. F. Acerbi, S. Gundacker, Understanding and simulating SiPMs, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 926 (2019) 16-35, https://doi.org/10.1016/j.nima.2018.11.118.
  17. P. Achenbach, M. Biroth, W. Lauth, A. Thomas, Gain stabilization and noise minimization for SiPMs at cryogenic temperatures, Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 912 (2018) 110-111, https://doi.org/10.1016/j.nima.2017.10.080.