DOI QR코드

DOI QR Code

A scintillation detector configuration for pulse shape analysis

  • Received : 2017.11.10
  • Accepted : 2018.07.16
  • Published : 2018.12.25

Abstract

This paper presents a neutron detector configuration using EJ-301 scintillation liquid, a R9420 photo-multiplier and a homemade preamplifier. The detector qualities which include the energy linearity, efficiency response and neutron/gamma discrimination are guaranteed for neutron detection in the energy range from 0 to 3000 keVee. Regarding the neutron/gamma discrimination capability, four pulse shape discrimination (PSD) methods which are the threshold crossing time (TCT), pulse gradient analysis (PGA), charge comparison (CC) and correlation pattern recognition (CPR), were evaluated and discussed; among of these, the CPR method provides the best neutron/gamma discrimination.

Keywords

References

  1. http://www.eljentechnology.com/products/liquid-scintillators/ej-301-ej-309.pdf.
  2. B. Wan, X.Y. Zhang, L. Chen, H.L. Ge, F. Ma, H.B. Zhang, Y.Q. Ju, Y.B. Zhang, Y.Y. Li, X.W. Xu, Digital pulse shape discrimination methods for n - $\gamma$ separation in an EJ-301 liquid scintillation detector, Chin. Phys. C 39 (11) (2015) 116201. https://doi.org/10.1088/1674-1137/39/11/116201
  3. G.F. Knoll, Radiation Detection and Measurement, John Wiley & Sons, 2010.
  4. C.S. Sosa, M. Flaska, S.A. Pozzi, Comparison of analog and digital pulse-shapediscrimination systems, Nucl. Instrum. Meth. A 826 (2016) 72-79. https://doi.org/10.1016/j.nima.2016.03.088
  5. A. Rahmat, L.R. Edward, F.S. David, Development of a handheld device for simultaneous monitoring of fast neutrons and gamma rays, IEEE Trans. Nucl. Sci. 49 (4) (2002) 1909-1913. https://doi.org/10.1109/TNS.2002.801508
  6. M. Nakhostin, P.M. Walker, Application of digital zero-crossing technique for neutron gamma discrimination in liquid organic scintillation detectors, Nucl. Instrum. Meth. A 621 (2010) 498-501. https://doi.org/10.1016/j.nima.2010.06.252
  7. B.D. Mellow, M.D. Aspinall, R.O. Mackin, M.J. Joyce, A.J. Peyton, Digital discrimination of neutrons and g-rays in liquid scintillators using pulse gradient analysis, Nucl. Instrum. Meth. A 578 (2007) 191-197.
  8. M.L. Roush, M.A. Wilson, W.F. Hornyak, Pulse shape discrimination, Nucl. Instr. Meth. 31 (1964) 112-124. https://doi.org/10.1016/0029-554X(64)90333-7
  9. G. Liu, M.J. Joyce, X. Ma, M.D. Aspinall, A digital method for the discrimination of neutrons and $\gamma$ rays with organic scintillation detectors using frequency gradient analysis, IEEE Trans. Nucl. Sci. 57 (2010) 1682-1691. https://doi.org/10.1109/TNS.2010.2044246
  10. A. Moslem, P. Vaclav, C. Frantisek, M. Zdenek, M. Filip, Quick algorithms for real-time discrimination of neutrons and gamma rays, J. Radioanal. Nucl. Chem. 303 (2015) 583-599. https://doi.org/10.1007/s10967-014-3406-5
  11. M.J. Safari, D.F. Abbasi, H. Afarideh, S. Jamili, E. Bayat, Discrete fourier transform method for discrimination of digital scintillation pulses in mixed neutron-gamma fields, IEEE Trans. Nucl. Sci. 63 (1) (2016) 325-332. https://doi.org/10.1109/TNS.2016.2514400
  12. D. Takaku, T. Oishi, M. Baba, Development of neutron-gamma discrimination technique using pattern-recognition method with digital signal processing, Prog. Nucl. Sci. Technol 1 (2011) 210-213. https://doi.org/10.15669/pnst.1.210
  13. E. Bayat, N. Divani-Vais, M.M. Firoozabadi, N. Ghal-Eh, A comparative study on neutron-gamma discrimination with NE213 and UGLLT scintillators using zero-crossing method, Radiat. Phys. Chem. 81 (2012) 217-220. https://doi.org/10.1016/j.radphyschem.2011.10.016
  14. R.A. Winyard, G.W. McBeth, Nucl. Instrum. Meth. 98 (1972) 525-533. https://doi.org/10.1016/0029-554X(72)90238-8
  15. J. Cerny, Z. Dolezal, M.P. Ivanov, E.S. Kuzmin, J. Svejda, I. Wilhelm, Study of neutron response and n-g discrimination by charge comparison method for small liquid scintillation detector, Nucl. Instrum. Meth. A 527 (2004) 512-518. https://doi.org/10.1016/j.nima.2004.03.179
  16. http://www.ortec-online.com/products/electronics/preamplifiers.
  17. http://www.canberra.com/products (accessed 11 September 2017).
  18. S.D. Jastaniah, P.J. Sellin, Digital pulse-shape algorithms for scintillation-based neutron detectors, IEEE Trans. Nucl. Sci. 49 (4) (2002) 1824-1828. https://doi.org/10.1109/TNS.2002.801674
  19. https://www.hamamatsu.com/resources/pdf/etd/R9420TPMH1296E.pdf.
  20. IEEE Standard Test Procedures for Amplifiers and Preamplifiers Used With Detectors of Ionizing Radiation, IEEE Std 301-1988.
  21. K. Gul, A.A. Naqvi, A.H. Al-Juwair, Relative neutron detector efficiency and response function measurements with a ${252}^Cf$ neutron source, Nucl. Instrum. Meth. A 278 (1989) 470-476. https://doi.org/10.1016/0168-9002(89)90867-X
  22. A.N. Lurie, J.L. Harris, C.J. Young, Calculation of Gamma-Ray response matrix for 5 cm NE-213 organic liquid scintillation detector, Nucl. Instrum. Meth. 129 (1975) 543-555. https://doi.org/10.1016/0029-554X(75)90750-8
  23. A.S. Pozzi, M.M. Bourne, D.S. Clarke, Pulse shape discrimination in the plastic scintillator EJ-299-33, Nucl. Instrum. Meth. A 723 (2013) 19-23. https://doi.org/10.1016/j.nima.2013.04.085